JOURNAL OF
POLYMER SCIENCE
ARTICLE
WWW.POLYMERCHEMISTRY.ORG
by 1H NMR and the molecular weight Mn and the PDI were
determined by GPC.
15 Salz, U.; Zimmermann, J.; Zeuner, F.; Moszner, N. J. Adhes.
Dent. 2005, 7, 107–116.
16 Zeuner, F.; Moszner, N.; Drache, M.; Rheinberger, V. Phos-
phrus Sulfur Silicon Relat. Elements 2002, 177, 2263.
CONCLUSIONS
17 Zeuner, F.; Moszner, N.; Volkel, T.; Vogel, K.; Rheinberger,
V. Phosphorus Sulfur Silicon Relat. Elements 1999, 144–146,
133–136.
New phosphonate/bisphosphonate-containing xanthates were
efficiently synthesized and used as CTAs for the RAFT/MADIX
polymerization of VAc. We have shown that the rate of VAc
polymerization is not influenced by the phosphonate moieties.
Indeed, similar polymerization behavior was observed with
VAc polymerizations mediated either by phosphonate-contain-
ing xanthates or by (methyl ethoxycarbonothioyl) sulfanyl ace-
tate, that is, without any phosphonate group. Thus the same
induction period of about 30 min was obtained for each xan-
thate. The same conclusion can be drawn about the control of
polymerization, as a linear evolution of Mw with monomer
conversion was observed whatever the xanthate CTA. Further-
more, PDIs values remained lower than 1.4 up to 70–80%.
These low-PDI values were attributed to a fast xanthate inter-
chain exchange, characterized by a Cex value of about 25, with
respect to the use of Rhodixan A1/VAc adduct in the RAFT/
MADIX polymerization of VAc. Finally, the end-group analysis
by Maldi-Tof revealed efficient phosphonate/bisphosphonate
chain-end functionalization of PVAc, that is, most of PVAc
chains contain acetophosphonate moiety in a-position. These
phosphonate end-capped PVAc may have great potential appli-
cations especially for water treatments after been hydrolyzed.
This will be the subject of a forthcoming article.
18 Senhaji, O.; Robin, J. J.; Achchoubi, M.; Boutevin, B. Macro-
mol. Chem. Phys. 2004, 205, 1039–1050.
19 Catel, Y.; Degrange, M.; Le Pluart, L.; Madec, P.-J.; Pham,
T.-N.; Chen, F.; Cook, W. D. J. Polym. Sci. Part A: Polym.
Chem. 2009, 47, 5258–5271.
20 Parvole, J.; Jannasch, P. Macromolecules 2008, 41, 3893.
21 Lafitte, B.; Jannasch, P. J. Polym. Sci. Part A: Polym. Chem.
2006, 45, 269–283.
22 Biedron, T.; Kaluzynski, K.; Pretula, J.; Kubisa, P.; Penczek,
S.; Loontjens, T. J. Polym. Sci. Part A: Polym. Chem. 2001, 39,
3024–3033.
23 Penczek, S.; Pretula, J.; Kaluzynski, K. Polish J. Chem. 2001,
75, 1171–1181.
24 Iwasaki, Y.; Nakagawa, C.; Ohtomi, M.; Ishihara, K.;
Akiyoshi, K. Biomacromolecules 2004, 5, 1110–1115.
25 Chougrani, K.; Boutevin, B.; David, G. Eur. Polym. J. 2008,
44, 1771.
26 Vepsalainen, J. J. Curr. Med. Chem. 2002, 9, 1201–1208.
27 Geddes, A. D.; D’Souza, S. M.; Ebetino, F. H.; Ibbotson, K. J.
Bone Miner. Res. 1994, 8, 265–306.
28 Chougrani, K.; Boutevin, B.; David, G.; Seabrook, S.; Loubat,
C. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 7972.
29 Kabay, N.; Gizli, N.; Demircioglu, M.; Yuksel, M.; Jyo,
A.; Yamabe, K.; Shuto, T. Chem. Eng. Commun. 2003, 190, 813–822.
REFERENCES
30 Kabay, N.; Demircioglu, M.; Ekinci, H.; Yueksel, M.; Saglam,
M.; Akcay, M.; Streat, M. Ind. Eng. Chem. Res. 1998, 37,
2541–2547.
1 Quittmann, U.; Lecamp, L.; El Khatib, W.; Youssef, B.; Bunel,
C. Macromol. Chem. Phys. 2001, 202, 628–635.
2 Hwang, K.-Y.; Chen, H.-H.; Tu, A.-P. (Chang Chun Plastics Co.,
Ltd., Taiwan). U.S. Patent Application Publication, 073781, 2003,
10 p.
31 Cavaco, S. A.; Fernandes, S.; Augusto, C. M.; Quina, M. J.;
Gando-Ferreira, L. M. J. Hazard. Mater. 2009, 169, 516–523.
32 El Asri, Z.; Chougrani, K.; Negrell-Guirao, C.; David, G.; Bou-
tevin, B.; Loubat, C. J. Polym. Sci. Part A: Polym. Chem. 2008,
46, 4794–4803.
3 Zhang, Y.; Tebby, J. C.; Wheeler, J. W. Eur. Polym. J. 1998,
35, 209–214.
4 Horrocks, A. R.; Zhang, S. Polymer 2001, 42, 8025–8033.
33 Boutevin, B.; Hervaud, Y.; Boulahna, A.; El Asri, M. Macro-
mol. Chem. Phys. 2002, 203, 1949–1957.
5 Gentilhomme, A.; Cochez, M.; Ferriol, M.; Oget, N.; Mielos-
zynski, J. L. Polym. Degrad. Stab. 2005, 88, 92–97.
34 Davis, K. P.; Hoye, P. A. T.; Williams, M. J.; Woodward, G.;
Greenhall, M. P. (Albright and Wilson Ltd., UK). European Pat-
ent Application 491391, 1992, 17 p.
6 Gentilhomme, A.; Cochez, M.; Ferriol, M.; Oget, N.; Mielos-
zynski, J. L. Polym. Degrad. Stab. 2003, 82, 347–355.
7 Ferriol, M.; Gentilhomme, A.; Cochez, M.; Oget, N.; Mielos-
zynski, J. L. Polym. Degrad. Stab. 2002, 79, 271–281.
35 David, G.; Negrell-Guirao, C.; Manseri, A.; Boutevin, B.
J. Appl. Polym. Sci. 2009, 114, 2213–2220.
8 Negrell-Guirao, C.; Boutevin, B. Macromolecules 2009, 42,
36 David, G.; El Asri, Z.; Reach, S.; Castignolles, P.; Guillaneuf,
Y.; Lacroix-Desmazes, P.; Boutevin, B. Macromol. Chem. Phys.
2009, 210, 631.
2446–2454.
9 Zoulalian, V.; Zurcher, S.; Tosatti, S.; Textor, M.; Monge, S.;
Robin, J.-J. Langmuir 2010, 26, 74–82.
37 David, G.; Boyer, C.; Tayouo, R.; Seabrook, S.; Ameduri, B.;
Boutevin, B.; Woodward, G.; Destarac, M. Macromol. Chem.
Phys. 2008, 208, 75–83.
10 Benabdellah, M.; Dafali, A.; Hammouti, B.; Aouniti, A.; Rho-
mari, M.; Raada, A.; Senhaji, O.; Robin, J. J Chem. Eng. Com-
mun. 2007, 194, 1328–1341.
38 David, G.; Boutevin, B.; Seabrook, S.; Destarac, M.; Wood-
ward, G.; Otter, G. Macromol. Chem. Phys. 2007, 208, 635–642.
11 Zakikhani, M.; Davis, J. (Albright & Wilson Uk Limited, UK).
European Patent Application 765889, 1997, 10 p.
39 Destarac, M. (Rhodia Recherches et Technologies, Fr.). PCT
International Application, WO, U.S. Patent 125892, 2006, 35 p.
12 Okamoto, T.; Mori, H.; Matsuda, H. (Okura Industrial Co.,
Japan). U.S. Patent 4433124, 1984, 8 p.
40 Destarac, M. Polym Rev. 2011, 51, 163–187.
13 Moszner, N.; Zeuner, F.; Fischer, U. K.; Rheinberger, V. Mac-
romol. Chem. Phys. 1999, 200, 1062–1067.
41 Kovacik, J.; Sedliacik, M. Drevo 1998, 53, 156–158, 170.
14 Moszner, N.; Salz, U.; Zimmermann, J. Dent. Mater. 2005,
21, 895–910.
42 Lindemann, M. K. Encycl. Polym. Sci. Technol. 1971, 15,
577–677.
2006
JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY 2012, 50, 1997–2007