Communication
ChemComm
16 M. Boronat, P. Concepcion, A. Corma, S. Gonzalez, F. Illas and
P. Serna, J. Am. Chem. Soc., 2007, 129, 16230–16237.
17 D. S. Su, G. Wen, S. Wu, F. Peng and R. Schlogl, Angew. Chem., Int.
Ed., 2017, 56, 936–964.
18 J. Zhu, A. Holmen and D. Chen, ChemCatChem, 2013, 5, 378–401.
19 S. A. Park, D. S. Kim, T. J. Kim and Y. T. Kim, ACS Catal., 2013, 3,
3067–3074.
20 T. W. Ebbesen and T. Takada, Carbon, 1995, 33, 973–978.
21 J. C. Charlier, Acc. Chem. Res., 2002, 35, 1063–1069.
22 V. Lordi, N. Yao and J. Wei, Chem. Mater., 2001, 13, 733–737.
23 M. J. Beier, J. M. Andanson and A. Baiker, ACS Catal., 2012, 2,
2587–2595.
24 J. Liu, Chin. J. Catal., 2017, 38, 1460–1472.
25 J. Xia, G. He, L. Zhang, X. Sun and X. Wang, Appl. Catal., B, 2016,
180, 408–415.
26 B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li
and T. Zhang, Nat. Chem., 2011, 3, 634–641.
27 X. F. Yang, A. Q. Wang, B. T. Qiao, J. Li, J. Y. Liu and T. Zhang, Acc.
Chem. Res., 2013, 46, 1740–1748.
the CQC bond in the presence of –NO2 (selective hydrogenation of
3-nitrostyrene). The presence of high number density edge/defect
sites in the synthesized h-NCs enhances the interaction between
Pd species and the carbon support, resulting in electron transfer
from Pd to carbon and thus forming a strong Pd–C bond. Such
strong electronic interaction not only enables facile H2 dissocia-
tion but also enhances the diffusion of the dissociated H species.
The synthesized Pd/h-NC catalyst yielded a selectivity of 97%,
stable up to 4 cycles, and a TOF of 21 845 hÀ1 for selective
hydrogenation of 3-nitrostyrene to 3-ethylnitrobenzene, more than
80 times higher than that of the best catalyst reported in
literature.23 This work provides insights in understanding the
effect of anchoring metal nanoparticles by edge/defect sites in
carbon supports on selective hydrogenation reactions. The strategy
of engineering carbon edge/defect sites to anchor Pd nanoparticles
to tune catalytic properties can be applied to other types of metals
for various types of catalytic reactions.
28 J. Y. Liu, ACS Catal., 2017, 7, 34–59.
29 B. C. Gates, M. Flytzani-Stephanopoulos, D. A. Dixon and A. Katz,
Catal. Sci. Technol., 2017, 7, 4259–4275.
30 A. Wang, J. Li and T. Zhang, Nat. Rev. Chem., 2018, 2, 65–81.
This work was supported by the National Science Foundation
under CHE-1465057. The authors gratefully acknowledge the use
of facilities within the Eyring Materials Center and the John M.
Cowley Center for High Resolution Electron Microscopy at Arizona
State University.
˘
31 M. M. Trandafir, L. Pop, N. D. Hadade, M. Florea, F. Neatu, C. M.
ˆ
Teodorescu, B. Duraki, J. A. van Bokhoven, I. Grosu, V. I. Parvulescu
and H. Garcia, Catal. Sci. Technol., 2016, 6, 8344–8354.
32 T. Ishida, Y. Onuma, K. Kinjo, A. Hamasaki, H. Ohashi, T. Honma,
T. Akita, T. Yokoyama, M. Tokunaga and M. Haruta, Tetrahedron,
2014, 70, 6150–6155.
33 R. G. Rao, R. Blume, T. W. Hansen, E. Fuentes, K. Dreyer, S. Moldovan,
O. Ersen, D. D. Hibbitts, Y. J. Chabal, R. Schlogl and J. P. Tessonnier,
Nat. Commun., 2017, 8, 340.
Conflicts of interest
¨
34 A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner and U. Poschl,
Carbon, 2005, 43, 1731–1742.
There are no conflicts to declare.
35 F. Tuinstra and J. L. Koenig, J. Compos. Mater., 1970, 4, 492–499.
36 A. C. Ferrari and J. Robertson, Phys. Rev. B: Condens. Matter Mater.
Phys., 2000, 61, 14095–14107.
37 K. Teii, S. Shimada, M. Nakashima and A. T. H. Chuang, J. Appl.
Phys., 2009, 106, 084303.
Notes and references
1 A. Corma and P. Serna, Science, 2006, 313, 332–334.
2 G. Booth, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, 38 L. Wang, Z. Sofer, D. Bousa, D. Sedmidubsky, S. Huber, S. Matejkova,
Weinheim, 2012, ch. 2.
3 H. U. Blaser, H. Steiner and M. Studer, ChemCatChem, 2009, 1,
210–221.
4 L. Huang, P. Luo, W. Pei, X. Liu, Y. Wang, J. Wang, W. Xing and
J. Huang, Adv. Synth. Catal., 2012, 354, 2689–2694.
5 M. Armbru¨ster, M. Behrens, F. Cinquini, K. Fottinger, Y. Grin,
A. Michalcova and M. Pumera, Angew. Chem., Int. Ed., 2016, 55,
13965–13969.
39 G. Wen, B. Wang, C. Wang, J. Wang, Z. Tian, R. Schlogl and D. S. Su,
Angew. Chem., Int. Ed., 2017, 56, 600–604.
40 J. H. Zhong, J. Zhang, X. Jin, J. Y. Liu, Q. Li, M. H. Li, W. Cai,
D. Y. Wu, D. Zhan and B. Ren, J. Am. Chem. Soc., 2014, 136,
16609–16617.
¨
¨
A. Haghofer, B. Klotzer, A. Knop-Gericke, H. Lorenz, A. Ota, S. Penner,
´
J. Prinz, C. Rameshan, Z. Revay, D. Rosenthal, G. Rupprechter, P. Sautet, 41 L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki,
¨
´
˜
R. Schlogl, L. Shao, L. Szentmiklosi, D. Teschner, D. Torres, R. Wagner,
A. Jorio, L. N. Coelho, R. Magalhaes-Paniago and M. A. Pimenta,
R. Widmer and G. Wowsnick, ChemCatChem, 2012, 4, 1048–1063.
Appl. Phys. Lett., 2006, 88, 163106.
42 I. Efremenko, J. Catal., 2003, 214, 53–67.
´
6 A. Borodzinski and G. C. Bond, Catal. Rev., 2006, 48, 91–144.
7 M. Chen, D. Kumar, C. W. Yi and D. W. Goodman, Science, 2005, 43 T. Prasomsri, D. Shi and D. E. Resasco, Chem. Phys. Lett., 2010, 497,
310, 291–293. 103–107.
8 F. R. Lucci, M. T. Darby, M. F. Mattera, C. J. Ivimey, A. J. Therrien, 44 F. Cardenas-Lizana, Y. Hao, M. Crespo-Quesada, I. Yuranov,
´
A. Michaelides, M. Stamatakis and E. C. Sykes, J. Phys. Chem. Lett.,
2016, 7, 480–485.
X. Wang, M. A. Keane and L. Kiwi-Minsker, ACS Catal., 2013, 3,
1386–1396.
9 G. Kyriakou, M. B. Boucher, A. D. Jewell, E. A. Lewis, T. J. Lawton, 45 Y. Lou, J. Ma, W. D. Hu, Q. G. Dai, L. Wang, W. C. Zhan, Y. L. Guo,
A. E. Baber, H. L. Tierney, M. Flytzani-Stephanopoulos and
E. C. H. Sykes, Science, 2012, 335, 1209–1212.
10 F. R. Lucci, M. D. Marcinkowski, T. J. Lawton and E. C. H. Sykes,
J. Phys. Chem. C, 2015, 119, 24351–24357.
X. M. Cao, Y. Guo, P. Hu and G. Z. Lu, ACS Catal., 2016, 6, 8127–8139.
46 R. Rahul, R. K. Singh, B. Bera, R. Devivaraprasad and M. Neergat,
Phys. Chem. Chem. Phys., 2015, 17, 15146–15155.
47 Z. Zhao, X. Huang, M. Li, G. Wang, C. Lee, E. Zhu, X. Duan and
Y. Huang, J. Am. Chem. Soc., 2015, 137, 15672–15675.
11 H. Wei, Y. Ren, A. Wang, X. Liu, X. Liu, L. Zhang, S. Miao, L. Li, J. Liu,
J. Wang, G. Wang, D. Su and T. Zhang, Chem. Sci., 2017, 8, 5126–5131. 48 Y. Feng, L. Zhou, Q. Wan, S. Lin and H. Guo, Chem. Sci., 2018, 9,
´
´
12 M. Makosch, W. I. Lin, V. Bumbalek, J. Sa, J. W. Medlin, K. Hungerbu¨hler
5890–5896.
and J. A. van Bokhoven, ACS Catal., 2012, 2, 2079–2081.
49 K. Namba, S. Ogura, S. Ohno, W. Di, K. Kato, M. Wilde, I. Pletikosic,
P. Pervan, M. Milun and K. Fukutani, Proc. Natl. Acad. Sci. U. S. A.,
2018, 115, 7896–7900.
50 J. K. Nørskov, T. Bligaard, A. Logadottir, S. Bahn, L. B. Hansen,
M. Bollinger, H. Bengaard, B. Hammer, Z. Sljivancanin, M. Mavrikakis,
Y. Xu, S. Dahl and C. J. H. Jacobsen, J. Catal., 2002, 209, 275–278.
51 B. Hammer and J. K. Norskov, Nature, 1995, 376, 238–240.
¨
13 K. Mobus, D. Wolf, H. Benischke, U. Dittmeier, K. Simon,
U. Packruhn, R. Jantke, S. Weidlich, C. Weber and B. Chen, Top.
Catal., 2010, 53, 1126–1131.
14 S. Furukawa, Y. Yoshida and T. Komatsu, ACS Catal., 2014, 4, 1441–1450.
15 A. Corma, P. Serna, P. Concepcion and J. J. Calvino, J. Am. Chem.
Soc., 2008, 130, 8748–8753.
This journal is ©The Royal Society of Chemistry 2018
Chem. Commun., 2018, 54, 13248--13251 | 13251