10.1002/anie.201904361
Angewandte Chemie International Edition
COMMUNICATION
Fig. 4. DFT-Derived potential energy surface (PES) of the proposed mechanism. L = chelating PhC(NtBu)2 ligand in all intermediates.
Acknowledgements
The calculated potential energy surface for the proposed
This
work
was
supported
by
the
Deutsche
mechanism of transformation of carboxamide
3
to
Forschungsgemeinschaft [Germany´s Excellence Strategy –
EXC 2008/1– 390540038 (UniSysCat) and with a PhD fellowship
by the Einstein Foundation Berlin (M.-P.L.). Y.W. gratefully
acknowledges financial support by the China Scholarship
Council. A.K. is grateful to the Alexander von Humboldt
Foundation for a postdoctoral fellowship. We thank Paula
Nixdorf (TU Berlin) for her assistance in the XRD measurements
and Dr. Terrance J. Hadlington (TU Berlin) for helpful
discussions.
disiloxanediamine 5 is presented in Figure 4.[14] Coordination of
ammonia to A results in formation of intermediate B at ∆G =
8.7 kcal mol-1. B undergoes an ammonolysis of the Si-N bond
via the four-membered TS(B-C) (∆G = 26.4 kcal mol-1) forming
the α-silylated acetamide (C) at ∆G = 26.4 kcal mol-1, that
further rearranges to the silyl enolether D (at ∆G = 2.3 kcal mol-
1) via TS(C-D) at ∆G = 23.5 kcal mol-1. This type of
rearrangement was previously reported for a α-boryl(silyl)
substituted N,N-dimethylacetamide leading to the isolation of
silylethers.[16] Coordination of NH3 to D forms intermediate E (at
∆G = 5.3 kcal mol-1) allowing the transfer of an H atom from NH3
to the vinyl moiety via the six-membered TS(E-F) at ∆G = 18.5
kcal mol-1 yielding the final disilyldiamine F and acetamide. The
barrier for the xanthene-linked carboxamide for Si-N bond
ammonolysis (3b + NH3) is 4 kcal mol-1 higher in energy
explaining the spacer depending reactivity thereof. Additional
mechanisms for this transformation were also considered but
could be excluded energetically (see Supporting Information).
Keywords: disilaketene • carbonylamination • ammonolysis •
carbonylation • silylenes
[1]
[2]
V. R. Pattabiraman, J. W. Bode, Nature 2011, 480, 471.
a) A. Brennführer, H. Neumann, M. Beller, Angew. Chem., Int. Ed. 2009,
48, 4114; b) J. Magano, J. R. Dunetz, Chem. Rev. 2011, 111, 2177.
a) A. Schoenberg, R. F. Heck, J. Org. Chem. 1974, 39, 3327; b) J. R.
Martinelli, D. M. M. Freckmann, S. L. Buchwald, Org. Lett. 2006, 8,
4843; c) J. R. Martinelli, T. P. Clark, D. A. Watson, R. H. Munday, S. L.
Buchwald, Angew. Chem., Int. Ed. 2007, 46, 8460; d) X.-F. Wu, H.
Neumann, M. Beller, Chem.-Eur. J. 2010, 16, 9750; e) R. J. Atkins, A.
Banks, R. K. Bellingham, G. F. Breen, J. S. Carey, S. K. Etridge, J. F.
Hayes, N. Hussain, D. O. Morgan, P. Oxley, S. C. Passey, T. C.
Walsgrove, A. S. Wells, Org. Process Red. Dev. 2003, 7, 663; f) C.
Torborg, M. Beller, Adv. Synth. Catal. 2009, 351, 3027; g) J. Y. Wang,
A. E. Strom, J. F. Hartwig, J. Am. Chem. Soc. 2018, 140, 7979.
D. J. Knobloch, E. Lobkovsky, P. J. Chirik, Nature 2009, 2, 30.
W. Ren, M. Yamane, J. Org. Chem. 2010, 75, 24. b) A. S. Suresh, P.
Baburajan, M. Ahmed, Tetrahedron Letters 2015, 56, 4864.
Y. Wang, A. Kostenko, T. J. Hadlington, M.-P. Luecke, S. Yao, M.
Driess, J. Am. Chem. Soc. 2019, 141, 1, 626.
[3]
In summary, the direct coupling of CO, NH3 and primary amines
into acetamides could be accomplished in a silicon-mediated
reaction sequence. Exposure of disilaketene 2a to NH3 (1 bar,
298 K)
and
benzylamine
yields
the corresponding
disiloxanediamines 5a and 5b under liberation of the acetamides
H3CC(O)NHR (R = H, benzyl), respectively, as confirmed by
13C-isotopic labelling experiments. Further studies revealed a
three-step reaction mechanism including an N-silylated
carboxamide 3b which could be isolated and fully characterized.
As a primary example, the strikingly facile Si-C bond cleavage is
accomplished by an intramolecular rearrangement to give the
silylated enolether D, resulting in an unprecedented Si-O bond
ammonolysis under ambient conditions.
[4]
[5]
[6]
[7]
First isolation of ketenes, see: a) H. Staudinger, Chem. Ber. 1905, 38,
1735; b) H. Staudinger, Chem. Ber. 1906, 39, 968; c) H. Staudinger,
Chem. Ber. 1906, 39, 3062.
[8]
[9]
For a ketene reactivity and synthesis overview, see: a) A. D. Allen, T.
T. Tidwell, Structure and Mechanism in Ketene Chemistry, Elsevier Ltd.
2014; b) T. T. Tidwell, Ketenes II, John Wiley & Sons, Inc. 2006; c) T.
Tidwell, J. Am. Chem. Soc. 1990, 112, 6396; d) T. T. Tidwell, Eur. J.
Org. Chem. 2006, 44, 563.
For reactivity of disilaketenes see: a) M. Ito, E. Shirakawa, H. Takaya,
Synlett 2002, 8, 1329; b) M. Ito, E. Shirakawa, H. Takaya, Synlett
1996, 635; c) Y. Kita, Y. Tsuzuki, S. Kitagaki, S. Akai, Chem Pharm.
Bull. 1994, 42,2, 233; d) M. Majumdar, I. Omlor, C. B. Yildiz, A.
This article is protected by copyright. All rights reserved.