10.1002/asia.201901511
Chemistry - An Asian Journal
FULL PAPER
[1]
a) L. Bogani, W. Wernsdorfer, Nat. Mater. 2008, 7, 179-186; b) R.
Sessoli, Angew. Chem. Int. Ed. 2012, 51, 43-45; c) R. Sessoli, H. L.
Tsai, A. R. Schake, S. Wang, J. B. Vincent, K. Folting, D. Gatteschi,
G. Christou, D. N. Hendrickson, J. Am. Chem. Soc. 1993, 115,
1804-1816; d) A. Caneschi, D. Gatteschi, R. Sessoli, A. L. Barra, L.
C. Brunel, M. Guillot, J. Am. Chem. Soc. 1991, 113, 5873-5874; e)
R. Sessoli, H. L. Tsai, A. R. Schake, S. Wang, J. B. Vincent, K.
Folting, D. Gatteschi, G. Christou, D. N. Hendrickson, J. Am. Chem.
Soc. 1993, 115, 1804-1816; f) R. Sessoli, D. Gatteschi, A. Caneschi,
M. A. Novak, Nature 1993, 365, 141-143; g) A. Caneschi, D.
Gatteschi, R. Sessoli, A. L. Barra, L. C. Brunel, M. Guillot, J. Am.
Chem. Soc. 1991, 113, 5873-5874; h) F. Shao, J. J. Zhuang, M. G.
Chen, N. Wang, H. Y. Shi, J. P. Tong, G. Luo, J. Tao, L. S. Zheng,
Dalton Trans. 2018, 47, 16850-16854; i) J.-P. Tong, F. Shao, J. Tao,
R.-B. Huang, L.-S. Zheng, Inorg. Chem. 2011, 50, 2067-2069; j) K.
S. Pedersen, L. Ungur, M. Sigrist, A. Sundt, M. Schau-Magnussen,
V. Vieru, H. Mutka, S. Rols, H. Weihe, O. Waldmann, L. F. Chibotaru,
J. Bendix, J. Dreiser, Chem. Sci. 2014, 5, 1650-1660; k) J. M.
Zadrozny, M. Atanasov, A. M. Bryan, C.-Y. Lin, B. D. Rekken, P. P.
Power, F. Neese, J. R. Long, Chem. Sci. 2013, 4, 125-138; l) P.
Zhang, L. Zhang, C. Wang, S. Xue, S.-Y. Lin, J. Tang, J. Am. Chem.
Soc. 2014, 136, 4484-4487.
thanks to the trigonal pyramid environment imposed by the
tetradente ligand that leads to a uniaxial ZFS and Ising-type
anisotropy. Magnetic studies reveal that, despite a smaller energy
barrier compound 1 has a magnetic relaxation time three times
slower than that of 2. This was attributed to the difference in the
rhombic parameters of the two compounds that was found to be
correlated to the difference in the structural parameters. The
much slower (thirty times) relaxation time of 1 compared to 3 is
mainly due to the smaller energy barrier of 3, that may be due to
two effects: the larger rhombic parameter and the smaller
distance between the paramagnetic centres in 3 that may induce
larger dipolar magnetic interactions. This last effect stems from
the smaller size of ClO4– (3) compared to BPh4– (1). Therefore, in
order to design CoII complexes with slow magnetic relaxation and
large barrier to the reorientation of the magnetization one needs
not only to perform a large axial anisotropy but also to decrease
the rhombic term, preferably up to zero to eliminate the transverse
process. Besides, large diamagnetic counter-ion(s), would
increase diamagnetic dilution and slow the magnetic relaxation. It
is important to note that other processes (Raman for example)
involving molecular and lattice vibrations are active and contribute
to speed up the relaxation process, but experimental
determination of the vibrational modes are necessary to draw
some qualitative conclusions on their effect.
[2]
D. Gatteschi, R. Sessoli, J. Villain, Molecular Nanomagnets, Oxford
University Press: New York, 2006.
[3]
[4]
T. Lis, Acta Crystallographica Section B 1980, 36, 2042-2046.
S. Gomez-Coca, E. Cremades, N. Aliaga-Alcalde, E. Ruiz, J. Am.
Chem. Soc. 2013, 135, 7010-7018.
[5]
[6]
[7]
C. A. P. Goodwin, F. Ortu, D. Reta, N. F. Chilton, D. P. Mills, Nature
2017, 548, 439.
F.-S. Guo, B. M. Day, Y.-C. Chen, M.-L. Tong, A. Mansikkamäki, R.
A. Layfield, Science 2018, 362, 1400-1403.
Experimental Section
a) J. M. Zadrozny, D. J. Xiao, M. Atanasov, G. J. Long, F. Grandjean,
F. Neese, J. R. Long, Nat. Chem. 2013, 5, 577-581; b) J. M.
Zadrozny, J. Liu, N. A. Piro, C. J. Chang, S. Hill, J. R. Long, Chem.
Commun. 2013, 48, 3927; c) P. C. Bunting, M. Atanasov, E.
Damgaard-Møller, M. Perfetti, I. Crassee, M. Orlita, J. Overgaard, J.
van Slageren, F. Neese, J. R. Long, Science 2018, 362, eaat7319;
d) F. Shao, B. Cahier, N. Guihery, E. Riviere, R. Guillot, A. L. Barra,
Y. Lan, W. Wernsdorfer, V. E. Campbell, T. Mallah, Chem. Commun.
2015, 51, 16475-16478; e) D. Schweinfurth, M. G. Sommer, M.
Atanasov, S. Demeshko, S. Hohloch, F. Meyer, F. Neese, B. Sarkar,
J. Am. Chem. Soc. 2015, 137, 1993-2005; f) F. Shao, B. Cahier, E.
Rivière, R. Guillot, N. Guihéry, V. E. Campbell, T. Mallah, Inorg.
Chem. 2017, 56, 1104-1111; g) R. Ruamps, L. J. Batchelor, R.
Guillot, G. Zakhia, A.-L. Barra, W. Wernsdorfer, N. Guihéry, T.
Mallah, Chem. Sci. 2014, 5, 3418-3424; h) R. Ruamps, R. Maurice,
L. Batchelor, M. Boggio-Pasqua, R. Guillot, A.-L. Barra, J. Liu, E.-E.
Bendeif, S. Pillet, S. Hill, T. Mallah, N. Guihéry, J. Am. Chem. Soc.
2013, 135, 3017-3026.
Generally, all starting materials were obtained commercially and
were used without further purification unless otherwise stated.
Elemental analyses for C, H, N were performed on a Thermo
Scientific Flash analyser. Infrared (IR) spectra were recorded on
a Bruker TENSOR-27 FT-IR spectrometer equipped with an
attenuated total reflectance (ATR) sample holder in a range of
4000−500 cm−1. Nuclear magnetic resonance (NMR) spectra
were recorded on a Bruker Aspect 300 NMR spectrometer. X-ray
diffraction data were collected by using a Kappa X8 APPEX II
Bruker
diffractometer
with
graphite-monochromated
MoKa radiation (l = 0.71073 Å). Magnetic data were collected
using a Quantum Design MPMS XL7 SQUID magnetometer.
Acknowledgements
We appreciate the financial supported by a public grant overseen
by the French National Research Agency (ANR) as part of the
“Investissements d’Avenir” program “Labex NanoSaclay”
(Reference: ANR-10-LABX-0035), partially financed by ANR-
project MolNanoSpin 13-BS10-0001-03 and NSF of Xiamen
University (Grant 2014013). F.S. and Y.-T.W. thank the
collaborative program between the China Scholarship Council
(No. 201306310014; 201506310023) and Université Paris-Sud,
Université Paris-Saclay. T.M. thanks the Institut Universitaire de
France for financial support.
[8]
[9]
T. J. Woods, M. F. Ballesteros-Rivas, S. Gómez-Coca, E. Ruiz, K.
R. Dunbar, J. Am. Chem. Soc. 2016, 138, 16407-16416.
a) V. V. Novikov, A. A. Pavlov, Y. V. Nelyubina, M.-E. Boulon, O. A.
Varzatskii, Y. Z. Voloshin, R. E. P. Winpenny, J. Am. Chem. Soc.
2015, 137, 9792-9795; b) Y. Rechkemmer, F. D. Breitgoff, M. van
der Meer, M. Atanasov, M. Hakl, M. Orlita, P. Neugebauer, F. Neese,
B. Sarkar, J. van Slageren, Nat. Commun. 2016, 7, 10467; c) X.-F.
Jiang, M.-G. Chen, J.-P. Tong, F. Shao, New J. Chem. 2019, 43,
8704-8710.
[10]
a) K. S. Cole, R. H. Cole, J. Chem. Phys. 1941, 9, 341-351; b) M.
Perovic, V. Kusigerski, V. Spasojevic, A. Mrakovic, J. Blanusa, M.
Zentkova, M. Mihalik, J. Phys. D: Appl. Phys. 2013, 46, 165001.
K. S. Cole, R. H. Cole, J. Chem. Phys. 1941, 9, 341-351.
B. Cahier, R. Maurice, H. Bolvin, T. Mallah, N. Guihéry,
Magnetochemistry 2016, 2, 31.
[11]
[12]
Keywords: magnetic anisotropy • magnetic relaxation • single
molecule magnets • molecular magnetism
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.