916
N. Chandrasoma et al. / Tetrahedron Letters 54 (2013) 913–917
Br
Br
OsO4 (0.1 equiv)
NaIO4 (15 equiv)
20
NMO (5.0 equiv)
THF/H2O (1.5:1), rt
75%
THF/H2O (3.3:1), rt
99%
OHC
+
N
N
TBS
33
TBS
HO
Br
34
CHO
OH
Br
H
EtSH
Ni (R)
BF3•OEt2
-78 °C to rt
74%
acetone
(EtS)2HC
N
N
H
N
H
rt
H
35
CH(SEt)2
19, 16-31%
36, 30-36%
Scheme 8. Raney nickel reduction of 35.
Br
Br
NaBH4 (10 equiv)
MsCl (2.2 equiv)
34
Et3N (4.0 equiv)
CH2Cl2, 0 °C to rt
THF, 0 °C, 15 min
86%
MsOH2C
Br
HOH2C
N
N
TBS
TBS
82%
CH2OMs
CH2OH
37
Br
38
NaI (15 equiv)
TBAF (2.0 equiv)
powdered Zn (60 equiv)
glyme, 90 °C (sealed tube), 8 h
58%
THF, rt, 2 h
82%
N
N
H
TBS
19
39
Scheme 9. Fujimoto reduction of 34.
Acknowledgments
Br
SnBu3
40
Pd2(dba)3 (2.5 mol%)
AsPh3 (10 mol%)
THF
MW, 150 °C, 23 min
73%
We acknowledge support of this work by the National Institutes
of Health, Grant R01 GM069711 (K.R.B.). We also acknowledge
additional support of this work by the National Institutes of Health,
The University of Kansas Chemical Methodologies and Library
Development Center of Excellence (KU-CMLD), NIGMS, Grant P50
GM069663. We further acknowledge ACS Project SEED for a sum-
mer research internship for Ms. Susana Suarez. We thank Dr. Chris
Sakai for technical assistance with this project.
N
N
H
H
19
( )-cis-Trikentrin B
Scheme 10. Final step: Stille cross-coupling.
our work (Scheme 9). The dialdehyde 34 was reduced with sodium
borohydride, the resulting diol 37 mesylated, and then reduced un-
der the Fujimoto protocol (NaI, 15 equiv; powdered Zn (60 equiv);
glyme, 90 °C, sealed tube, 8 h) to afford the intermediate 39 (TBS
protected 19) in an improved and reliable 58% yield. Desilylation
was accomplished with TBAF (2.0 equiv; THF, rt, 2 h) to give the
5-bromoindole 19 in 82% yield.
The last step to complete the synthesis initially involved a plan
to generate the Grignard reagent from 39, followed by reaction
with butyraldehyde and then acid-catalyzed elimination. Surpris-
ingly, all attempts with the Grignard reaction or the alternative
metal–halogen exchange at this position were unsuccessful. Final-
ly, we turned to the Stille cross-coupling for introducing the bute-
nyl side chain (Scheme 10).
Supplementary data
Supplementary data (1H and 13C NMR data for all new com-
pounds reported and experimental details for their preparation
can be found under supplementary material as a PDF document)
associated with this article can be found, in the online version, at
References and notes
1. (a) MacLeod, J. K.; Monahan, L. C. Tetrahedron Lett. 1988, 29, 391–392; (b)
Huntley, R. J.; Funk, R. L. Org. Lett. 2006, 8, 3403–3406; (c) Jackson, S. A.; Kerr,
M. A. J. Org. Chem. 2007, 72, 1405–1411; (d) Liu, W.; Lim, H. J.; RajanBabu, T. V. J.
Am. Chem. Soc. 2012, 134, 5496–5499.
Although our initial attempts using conventional Stille
cross-coupling procedures with the vinyl tin reagent 4016 were
not effective, changing the ligand from triphenylphosphine to tri-
phenylarsine and employing microwave heating readily afforded
racemic cis-trikentrin B in 73% yield which was identical in all re-
spects for the physical and spectroscopic data reported for this
compound.
In conclusion we have achieved the total synthesis of ( )-cis-
trikentrin B using a new strategy that involves the selective me-
tal–halogen exchange in the 5,6,7-tribromoindole system and
which results in regioselective 6,7-indole aryne formation. This
efficient and complementary reaction orthogonality combined
with robust cross-coupling chemistry is being used for the total
synthesis of other members of the annulated indole alkaloid class
of natural products. The results will be disclosed as developments
warrant.
2. (a) Yasukouchi, T.; Kanematsu, K. Tetrahedron Lett. 1989, 30, 6559–6562; (b)
Boger, D. L.; Zhang, M. J. Am. Chem. Soc. 1991, 113, 4230–4234; (c) Widenau, P.;
Monse, B.; Blechert, S. Tetrahedron 1995, 51, 1167–1176; (d) Silva, L. F.;
Craveiro, M. V. Org. Lett. 2008, 10, 5417–5420.
3. (a) Jackson, S. K.; Banfield, S. C.; Kerr, M. A. Org. Lett. 2005, 7, 1215–1218. and
references cited therein; (b) Saito, N.; Ichimaru, T.; Sato, Y. Org. Lett. 2012, 14,
1914–1917.
4. Nakatsuka, S.; Matsuda, T.; Goto, T. Tetrahedron Lett. 1987, 38, 3671–3674.
5. Smith, A. B., III; Kanoh, N.; Ishiyama, H.; Hartz, R. A. J. Am. Chem. Soc. 2000, 122,
11254–11255.
6. (a) Singh, S. B.; Ondeyka, J. G.; Jayasuriya, H.; Zink, D. L.; Ha, S. N.; Dahl-Roshak,
A.; Greene, J.; Kim, J. A.; Smith, M. M.; Shoop, W.; Tkacz, J. S. J. Nat. Prod. 2004,
67, 1496–1506; (b) Smith, A. B., III; Kuerti, L.; Davulcu, A. H.; Cho, Y. S.; Ohmoto,
K. J. Org. Chem. 2007, 72, 4611–4620.
7. Indole arynes: (a) Buszek, K. R.; Luo, D.; Kondrashov, M.; Brown, N.;
VanderVelde, D. Org. Lett. 2007, 9, 4135–4137; (b) Brown, N.; Luo, D.;
VanderVelde, D.; Yang, S.; Brassfield, A.; Buszek, K. R. Tetrahedron Lett. 2009,
50, 63–65; (c) Garr, A. N.; Luo, D.; Brown, N.; Cramer, C. J.; Buszek, K. R.;
VanderVelde, D. Org. Lett. 2010, 12, 96–99. Benzofuran arynes:; (d) Brown, N.;
Buszek, K. R. Tetrahedron Lett. 2012, 53, 4022–4025.