D. J. L. Jones et al. / Bioorg. Med. Chem. 13 (2005) 6727–6731
6731
1
supernatant was diluted with water (1:1) and injected
onto the HPLC column (injection volume 50 lL).
Proton ( H) spectra were generated with a Bruker ARX
250 MHz spectrometer, using deuterated dimethylsulf-
oxide as the solvent.
4
.4. Analysis of quercetin sulfates by HPLC
The products of the chemical reaction of quercetin with
sulfur trioxide-N-triethylamine or extracts of urine were
separated on a BDS-Hypersil C18 column (250 · 4.6 mm
I.D., 5 lm particle size, Phenomenex, Macclesfield,
UK). The instrument used was a Varian Prostar system
Acknowledgments
We thank Professor Gordon Roberts, Leicester Univer-
sity, for help with the interpretation of the NMR analy-
ses and Dr. Robert Britton for proof-reading the
manuscript.
(
(
Walton-on-Thames, UK), comprising a UV detector
Model 310), solvent delivery system (Model 230) and
an autosampler (Model 410) with a 100 lL injection
loop. The gradient elution programme commenced with
References and notes
7
5% ammonium acetate (0.1 M, pH 5.15) in methanol,
which was followed by a linear decrease over 10 min
to 55% ammonium acetate in methanol, and then to
1. Hollman, P. C. H.; Hertog, M. G. L.; Katan, M. B.
Biochem. Soc. Trans. 1996, 24, 785–789.
2
3
4
. Hertog, M. G. L.; Feskens, E. J. M.; Hollman, P. C. H.;
Katan, M. B.; Kromhout, D. Lancet 1993, 342, 1007–
4
2
5% ammonium acetate in methanol over a further
0 min, after which the mobile phase remained isocratic
1
. Hertog, M. G. L.; Feskens, E. J. M.; Hollman, P. C. H.;
011.
for a further 5 min. The instrument was operated with a
flow rate of 1.0 mL/min and detection by UV spectro-
photometry (375 nm).
Katan, M. B.; Kromhout, D. Nutr. Cancer 1994, 22, 175–
1
84.
. Hertog, M. G. L.; Kromhout, D.; Aravanis, C.; Black-
burn, H.; Buzina, R.; Fidanza, F.; Giampaoli, S.; Jansen,
A.; Menotti, A.; Nedeljkovic, S.; Pekkarinen, M.; Simic,
B. S.; Toshima, H.; Feskens, E. J. M.; Hollman, P. C. H.;
Katan, M. B. Arch. Intern. Med. 1995, 155, 381–386.
. Keli, S. O.; Hertog, M. G. L.; Feskens, E. J. M.;
Kromhout, D. Arch. Intern. Med. 1996, 156, 637–642.
. Jones, D. J. L.; Lamb, J. H.; Verschoyle, R. D.; Howells,
L. M.; Butterworth, M.; Lim, C. K.; Ferry, D.; Farmer, P.
B.; Gescher, A. J. Br. J. Cancer 2004, 91, 1213–1219.
. Day, A. J.; Mellon, F.; Barron, D.; Sarrazin, G.; Morgan,
M. R. A.; Williamson, G. Free Radic. Res. 2001, 35, 941–
A second system was used to fraction-collect the querce-
tin sulfates from HPLC eluant. A Gilson semi-prepara-
tive system (Gilson Inc., Middleton, WI, USA)
comprising two pumps and a UV detector with a Rheo-
dyne 7125 manual injector connected to a 500 ll loop
was used. Fractions were collected when they eluted
from a semi-preparative column (250 · 21.2 mm I.D.,
5
6
5
lm particle size, Phenomenex, Macclesfield). The
chromatographic conditions were as described above,
except that the flow rate was 10 mL/min.
7
9
8. Day, A. J.; Bao, Y. P.; Morgan, M. R. A.; Williamson, G.
52.
4.5. Analysis of quercetin sulfates by mass spectrometry
and H NMR spectrometry
1
Free Radic. Biol. Med. 2000, 29, 1234–1243.
. Justino, G. C.; Santos, M. R.; Canario, S.; Borges, C.;
9
Florencio, M. H.; Mira, L. Arch. Biochem. Biophys. 2004,
4
LC–MS was carried out using a Micromass Platform
mass spectrometer coupled with a Hewlett Packard Ser-
ies 1100 HPLC system and a UV detector absorbing at
32, 109–121.
0. Moon, J. H.; Tsushida, T.; Nakahara, K.; Terao, J. Free
Radic. Biol. Med. 2001, 30, 1274–1285.
1
1
3
75 nm. The eluant was split 1:7 post column so that
1. Tendler, S. J. B.; Griffin, R. J.; Birdsall, B.; Stevens, M. F.
G.; Roberts, G. C. K.; Feeney, J. FEBS Lett. 1988, 240,
approximately 142 lL/min of eluant entered the mass
spectrometer. Source temperature was maintained at
2
01–204.
110 ꢁC. Cone voltage was 42 V, while the capillary volt-
age was maintained at 3.82 kV.
12. Jin, G. Z.; Yamagata, Y.; Tomita, K. Acta Crystallogr.
Sect. C Crystal Struct. Commun. 1990, 46, 310–313.