Journal of the American Chemical Society
Communication
cross-coupling of an alkyl tosylate with aryl bromide: Liu, J.-H.; Yang, C.-
T.; Lu, X.-Y.; Zhang, Z.-Q.; Xu, L.; Cui, M.; Lu, X.; Xiao, B.; Fu, Y.; Liu,
L. Chem. - Eur. J. 2014, 20, 15334.
(7) (a) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. J. Am. Chem.
Soc. 2013, 135, 7442. (b) Cherney, A. H.; Reisman, S. E. J. Am. Chem.
Soc. 2014, 136, 14365.
(8) (a) Stille, J. K.; Cowell, A. B. J. Organomet. Chem. 1977, 124, 253.
(b) Tsou, T. T.; Kochi, J. K. J. Am. Chem. Soc. 1979, 101, 7547. (c) Jones,
G. D.; Martin, J. L.; McFarland, C.; Allen, O. R.; Hall, R. E.; Haley, A. D.;
Brandon, R. J.; Konovalova, T.; Desrochers, P. J.; Pulay, P.; Vicic, D. A. J.
Am. Chem. Soc. 2006, 128, 13175. (d) Lin, X.; Phillips, D. L. J. Org. Chem.
building block to prepare biologically active scaffolds, such as
halicholactone, a lipoxygenase inhibitor, and its family
members.24 We envisioned that our method could be used to
synthesize analogs of this class of natural products. 2-Furan-
substituted cyclopropane cis-33 was oxidized using the reported
conditions (Scheme 4). 2-Enonic acid 34 was obtained in 66%
yield with no loss of stereochemistry.
Scheme 4. Oxidation of Furan 33
2008, 73, 3680. (e) Castano, A. M.; Echavarren, A. M. Organometallics
̃
1994, 13, 2262. (f) Phapale, V. B.; Bunuel, E.; García-Eglesias, M.;
́
Cardenas, D. J. Angew. Chem., Int. Ed. 2007, 46, 8790. (g) Schley, N. D.;
Fu, G. C. J. Am. Chem. Soc. 2014, 136, 16588. (h) Biswas, S.; Weix, D. J. J.
Am. Chem. Soc. 2013, 135, 16192. Formation of an alkyl radical during
oxidative addition is not the only mechanism by which a stereoablative
reaction can occur: (i) Terao, J.; Watanabe, H.; Ikumi, A.; Kuniyasu, H.;
Kambe, N. J. Am. Chem. Soc. 2002, 124, 4222. (j) Gutierrez, O.; Tellis, J.
C.; Primer, D. N.; Molander, G. A.; Kozlowski, M. C. J. Am. Chem. Soc.
2015, 137, 4896.
(9) (a) Tollefson, E. J.; Dawson, D. D.; Osborne, C. A.; Jarvo, E. R. J.
Am. Chem. Soc. 2014, 136, 14951. (b) Tollefson, E. J.; Hanna, L. E.;
(10) Synthesis of cyclopentanes by Ni-catalyzed reductive coupling:
Xue, W.; Xu, H.; Liang, Z.; Qian, Q.; Gong, H. Org. Lett. 2014, 16, 4984.
(11) (a) Salaun, J. In Topics in Current Chemistry; de Meijere, A., Ed.;
Springer-Verlag: Berlin, 2000; Vol. 207, pp 1−66. (b) Chen, D. Y.-K.;
Pouwer, R. H.; Richard, J.-A. Chem. Soc. Rev. 2012, 41, 4631.
(12) (a) A review: Bartoli, G.; Bencivenni, G.; Renato, D. Synthesis
2014, 46, 979. (b) Ring-contraction of dihydropyrans via [1,4]-Wittig
rearrangement: Mori-Quiroz, L. M.; Maleczka, R. E. J. Org. Chem. 2015,
80, 1163. (c) Engineered P450 for enantioselective cyclopropanation:
Coehlo, P. S.; Brustad, E. M.; Kannan, A.; Arnold, F. H. Science 2013,
339, 307.
In summary, stereospecific synthesis of di- and trisubstituted
cyclopropanes is achieved via a Ni-catalyzed reductive cross-
electrophile coupling of 2-aryl-4-chlorotetrahydropyrans. The
ring contraction is stereospecific with respect to both the
benzylic ether and the alkyl halide moieties. Efforts to expand the
scope and elucidate the mechanism of the transformation are
underway.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental details and characterization data. The Supporting
see also CCDC 1059382, 1413565, and 1414041.
AUTHOR INFORMATION
Corresponding Author
■
(13) See Supporting Information for details.
(14) Harris, M. R.; Konev, M. O.; Jarvo, E. R. J. Am. Chem. Soc. 2014,
136, 7825.
(15) Replacing Grignard reagent with 2 equiv of MgI2 resulted in no
conversion of 8, consistent with a required terminal reducing agent.
(16) Failure of alternative reducing agents is consistent with
transmetalation of the Grignard reagent prior to oxidative addition of
benzylic ether.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by NSF-CHE-1464980 and the
University of California (Chancellor’s Fellowship and Graduate
Opportunity Fellowship to E.J.T.). We acknowledge Dr. Joseph
Ziller for X-ray crystallographic data and Dr. John Greaves for
mass spectrometry data.
(17) (a) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 1340. (b) For
stereoconvergent cross-coupling reactions of these substrates, see ref 9a.
REFERENCES
■
(18) See SI for details. Yadav, J. S.; Subba Reddy, B. V.; Padmavani, B.;
Venugopal, Ch.; Bhaskar Rao, A. Tetrahedron Lett. 2007, 48, 4631.
(19) Enantioselectivity: Denmark, S. E.; Vogler, T. Chem. - Eur. J. 2009,
15, 11737.
(20) In our experience, cross-coupling reactions of benzylic ethers,
including tetrahydropyrans, occurs with inversion (ref 9a). Suzuki
coupling of benzylic esters can proceed with retention or inversion:
(a) Harris, M. R.; Hanna, L. E.; Greene, M. A.; Moore, C. E.; Jarvo, E. R.
J. Am. Chem. Soc. 2013, 135, 3303. (b) Zhou, Q.; Srinivas, H. D.;
Dasgupta, S.; Watson, M. P. J. Am. Chem. Soc. 2013, 135, 3307.
(21) (a) Borkar, P.; van de Weghe, P.; Reddy, B. V. S.; Yadav, J. S.;
Gree, R. Chem. Commun. 2012, 48, 9316. (b) Pastor, I. M.; Yus, M. Curr.
́
Org. Chem. 2012, 16, 1277.
(22) Greene, M. A. Ph.D. Thesis, University of California, Irvine, May
2013.
(23) Kobayashi, Y.; Nakano, M.; Kumar, G. B.; Kishihara, K. J. Org.
Chem. 1998, 63, 7505.
(24) (a) Niwa, H.; Wakamatsu, K.; Yamada, K. Tetrahedron Lett. 1989,
30, 4543. (b) Proteau, P. J.; Rossi, J. V.; Gerwick, W. H. J. Nat. Prod.
1994, 57, 1717.
(1) Modern Organonickel Chemistry; Tamaru, Y., Ed.; Wiley-VCH:
Weinhein, 2005.
(2) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299.
(3) For a discussion, see: (a) Jana, R.; Pathak, T. P.; Sigman, M. S.
Chem. Rev. 2011, 111, 1417. (b) Hu, X. Chem. Sci. 2011, 2, 1867.
(c) Netherton, M. R.; Fu, G. C. Adv. Synth. Catal. 2004, 346, 1525.
(4) (a) Knappke, C. E. I.; Grupe, S.; Gartner, D.; Corpet, M.; Gosmini,
C.; von Wangelin, A. J. Chem. - Eur. J. 2014, 20, 6828. (b) Everson, D. A.;
Weix, D. J. J. Org. Chem. 2014, 79, 4793.
(5) (a) Everson, D. A.; Shrestha, R.; Weix, D. J. J. Am. Chem. Soc. 2010,
132, 920. (b) Everson, D. A.; Jones, B. A.; Weix, D. J. J. Am. Chem. Soc.
2012, 134, 6146. (c) Anka-Lufford, L. L.; Prinsell, M. R.; Weix, D. J. J.
Org. Chem. 2012, 77, 9989. See the following for cross-electrophile
coupling of epoxides with aryl bromides. (d) Stereospecific: Zhao, Y.;
Weix, D. J. J. Am. Chem. Soc. 2014, 136, 48. (e) Stereoconvergent: Zhao,
Y.; Weix, D. J. J. Am. Chem. Soc. 2015, 137, 3237. (f) Review of cross-
coupling reactions of epoxides: Huang, C.-Y.; Doyle, A. G. Chem. Rev.
2014, 114, 8153.
̈
(6) (a) Ackerman, L. K. G.; Anka-Lufford, L. L.; Naodovic, M.; Weix,
D. J. Chem. Sci. 2015, 6, 1115. (b) Cu-catalyzed stereospecific reductive
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX