Journal of the American Chemical Society
ARTICLE
0
CALBIOCHEM. GMP (guanosine-5 -monophosphate) was purchased
from Amersco.
Schramm, V. L. Biochemistry 2006, 45, 12929–12941. (d) Ueda, A.;
Wood, T. K. PloS Pathogens 2009, 5, e1000483.
General Preparation of Sample before Measurements
Assay. c-di-GMP, water, buffer solution (pH 7.5), and salt solutions
were mixed, heated to 95 °C and kept at 95 °C for 5 min, and then cooled
back to room temperature and kept at room temperature for 15 min. TO
was then added to the mixture and incubated in the refrigerator at 4 °C
overnight (about 12 h).
(2) (a) Schirmer, T.; Jenal, U. Nat. Rev. Microbiol. 2009, 7, 724–735.
(
b) Galperin, M. Y. Curr. Opin. Microbiol. 2010, 13, 150–159. (c) Jonas,
€
K.; Melefors, O.; R €o mling, U. Future Microbiol. 2009, 4, 341–358. (d)
Pesavento, C.; Hengge, R. Curr. Opin. Microbiol. 2009, 12, 170–176. (e)
Krasteva, P. V.; Fong, J. C.; Shikuma, N. J.; Beyhan, S.; Navarro, M. V.;
Yildiz, F. H.; Sondermann, H. Science 2010, 327, 866–868. (f) Camilli,
A.; Bassler, B. L. Science 2006, 311, 1113–1116. (g) Tamayo, R.; Pratt,
J. T.; Camilli, A. Annu. Rev. Microbiol. 2007, 61, 131–148.
Measurement of Fluorescence. The instrument settings were
chosen as follows: λex = 508 nm (slit 5 nm), λem = 518-700 nm (slit
(3) (a) Sintim, H. O.; Smith, J. A.; Wang, J.; Nakayama, S.; Yan, L.
5
nm). The measurements were carried out at 10 °C.
Measurement of Thiazole Orange UV Spectra. The instru-
Future Med. Chem. 2010, 2, 1005–1035. (b) Beyhan, S.; Tischler, A. D.;
Camilli, A.; Yildiz, F. H. J. Bacteriol. 2006, 188, 3600–3613.
ment settings were chosen as follows: wavelength = 400-600 nm,
temperature was 10 °C. The concentration of c-di-GMP was 70 μM, TO
was 30 μM, and buffer was 10 mM Tris-HCl (pH 7.5) containing 0 mM
(4) (a) Hengge, R. Nat. Rev. Microbiol. 2009, 7, 263–273. (b)
R €o mling, U.; Gomelsky, M.; Galperin, M. Y. Mol. Microbiol. 2005,
57, 629–639.
or 1 M metal (NaCl, KCl, NH
Circular Dichroism Experiments (CD). The concentration of
c-di-GMP was 70 μM, TO was 30 μM, and buffer was 10 mM Tris-HCl
4
OAc, and LiCl).
(5) (a) Ramelot, T. A.; Yee, A.; Cort, J. R.; Semesi, A.; Arrowsmith,
C. H.; Kennedy, M. A. Proteins 2007, 66, 266–271. (b) Merighi, M.; Lee,
V. T.; Hyodo, M.; Hayakawa, Y.; Lory, S. Mol. Microbiol. 2007,
65, 876–895. (c) Freedman, J. C.; Rogers, E. A.; Kostick, J. L.; Zhang,
H.; Iyer, R.; Schwartz, I.; Marconi, R. T. FEMS Immunol. Med. Microbiol.
(pH 7.5) containing 0 mM, 50 mM, 150 mM, 250 mM, 500 mM, or 1 M
metal (NaCl, KCl, NH OAc, and LiCl). The measurement was per-
4
2
010, 58, 285–294.
formed at 10 °C. For stability study, 10, 25, and 50 °C were used as
analysis temperatures. Data pitch, 1 nm; scan speed, 50 nm/min;
response, 8 s; bandwidth, 1 nm.
Preparation of the Cell Lysate. E. Coli BL21(DE3) was used for
production of WspR(D70E), RocR from pVL1321 (a pET vector
derivative). Strains were grown up at 30 °C in Luria-Bertani (LB)
medium (3 L) with shaking, and IPTG induction was performed for 6 h.
Final OD (600 nm) was 2.8 for BL21(DE3) pVL1321-wspR, 6.8 for
BL21(DE3) pVL1321-rocR, and 6.0 BL21(DE3) pVL1321 vector con-
(6) (a) Lee, E. R.; Baker, J. L.; Weinberg, Z.; Sudarsan, N.; Breaker,
R. R. Science 2010, 329, 845–848. (b) Sudarsan, N.; Lee, E. R.; Weinberg,
Z.; Moy, R. H.; Kim, J. N.; Link, K. H.; Breaker, R. R. Science 2008,
321, 411–413. (c) Kulshina, N.; Baird, N. J.; Ferr ꢀe -D’Amar ꢀe , A. R. Nat.
Struct. Mol. Biol. 2009, 16, 1212–1217. (d) Smith, K. D.; Lipchock, S. V.;
Ames, T. D.; Wang, J.; Breaker, R. R.; Strobel, S. A. Nat. Struct. Mol. Biol.
2
009, 16, 1218–1223.
7) (a) Liu, X.; Beyhan, S.; Lim, B.; Linington, R. G.; Yildiz, F. H.
(
J. Bacteriol. 2010, 192, 4541–4552. (b) Simm, R.; Morr, M.; Remmin-
ghorst, U.; Andersson, M.; R €o mling, U. Anal. Biochem. 2009, 386, 53–58.
(c) Christen, M.; Kulasekara, H. D.; Christen, B.; Kulasekara, B. R.;
Hoffman, L. R.; Miller, S. I. Science 2010, 328, 1295–1297.
trol cells. From plating of serial dilution of the culture, each OD
9
(
600 nm) unit is equivalent to 1 ꢀ 10 colony forming units (CFU).
Cell were pelleted by centrifugation and resuspended to a final volume of
0 mL of 10 mM Tris-HCl (pH 8.0) containing 100 mM NaCl. 100 μL
4
(8) Hickman, J. W.; Harwood, C. S. Mol. Microbiol. 2008,
of 25 mg/mL Lysozyme was added to each resuspension. The resuspen-
sion was sonicated (20 s, three times) to disrupt membranes and allow
lysozyme to reach cell walls. 60% perchloric acid (final concentration
was 12%) was added to the resuspension to precipitate cellular macro-
molecules. The resuspension was incubated for 10 min on ice and
neutralized by 3 M KOH containing 0.4 M Tris and 2 M KCl. The
resuspension was centrifuged, and the collected supernatant was then
filtered by a 0.2 μm filter and 3 kD exclusion columns.
69, 376–389.
(9) (a) Biver, T.; García, B.; Leal, J. M.; Secco, F.; Turriani, E. Phys.
Chem. Chem. Phys. 2010, 12, 13309–13317. (b) Pu, F.; Huang, Z.; Ren,
J.; Qu, X. Anal. Chem. 2010, 82, 8211–8216. (c) Lubitz, I.; Zikich, D.;
Kotlyar, A. Biochemistry 2010, 49, 3567–3574. (d) Li, K.; Liu, B. Anal.
Chem. 2009, 81, 4099–4105. (e) Pei, R.; Rothman, J.; Xie, Y.; Stojanovic,
M. N. Nucleic Acids Res. 2009, 37, e59. (f) Yang, P.; De Cian, A.; Teulade-
Fichou, M. P.; Mergny, J. L.; Monchaud, D. Angew. Chem., Int. Ed. 2009,
48, 2188–2191.
(10) (a) Nygren, J.; Svanvik, N.; Kubista, M. Biopolymers 1998,
’
ASSOCIATED CONTENT
46, 39–51. (b) Karunakaran, V.; P ꢀe rez Lustres, J. L.; Zhao, L.; Ernsting,
N. P.; Seitz, O. J. Am. Chem. Soc. 2006, 128, 2954–2962.
(11) (a) Larsson, A.; Carlsson, C.; Jonsson, M.; Albinsson, B. J. Am.
Chem. Soc. 1994, 116, 8459–8465. (b) Netzel, T. L.; Nafisi, K.; Zhao, M.;
Lenhard, J. R.; Johnson, I. J. Phys. Chem. 1995, 99, 17936–17947.
S
Supporting Information. Additional figures and calcula-
b
tions. This material is available free of charge via the Internet at
http://pubs.acs.org.
(
12) Zhang, Z.; Kim, S.; Gaffney, B. L.; Jones, R. A. J. Am. Chem. Soc.
006, 128, 7015–7024.
13) Shim, J. W.; Tan, Q.; Gu, L. Q. Nucleic Acids Res. 2009,
7, 972–982.
14) (a) Sen, D.; Gilbert, W. Nature 1990, 344, 410–414. (b) Lee,
J. Y.; Yoon, J.; Kihm, H. W.; Kim, D. S. Biochemistry 2008,
7, 3389–3396. (c) Olsen, C. M.; Gmeiner, W. H.; Marky, L. A. J. Phys.
2
’
AUTHOR INFORMATION
(
3
Corresponding Author
(
4
Chem. B 2006, 110, 6962–6969. (d) Hardin, C. C.; Perry, A. G.; White,
K. Biopolymers 2001, 56, 147–194. (e) Keniry, M. A. Biopolymers 2001,
56, 123–146. (f) Mariani, P.; Spinozzi, F.; Federiconi, F.; Ortore, M. G.;
Amenitsch, H.; Spindler, L.; Drevensek-Olenik, I. J. Nucleic Acids
’
ACKNOWLEDGMENT
The National Science Foundation Grant CHE 0746446
supported this work.
REFERENCES
2010, 472478. (g) Davis, J. T. Angew. Chem., Int. Ed. 2004,
43, 668–698. (h) Davis, J. T.; Spada, G. P. Chem. Soc. Rev. 2007,
36, 296–313.
’
(1) (a) Rasko, D. A.; Sperandio, V. Nat. Rev. Drug Discovery 2010,
(15) (a) Seo, Y. J.; Lee, I. J.; Kim, B. H. Bioorg. Med. Chem. Lett. 2008,
9
4
, 117–128. (b) Ng, W. L.; Bassler, B. L. Annu. Rev. Genet. 2009,
3, 197–222. (c) Singh, V.; Shi, W.; Almo, S. C.; Evans, G. B.; Furneaux,
18, 3910–3913. (b) Siddiqui-Jain, A.; Grand, C. L.; Bearss, D. J.; Hurley,
L. H. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 11593–11598. (c) Evans,
S. E.; Mendez, M. A.; Turner, K. B.; Keating, L. R.; Grimes, R. T.;
R. H.; Tyler, P. C.; Painter, G. F.; Lenz, D. H.; Mee, S.; Zheng, R.;
4
863
dx.doi.org/10.1021/ja1091062 |J. Am. Chem. Soc. 2011, 133, 4856–4864