Langmuir
Article
(8) Li, H.; Choi, J.; Nakanishi, T. Optoelectronic functional materials
based on alkylated-π molecules: Self-assembled architectures and
nonassembled liquids. Langmuir 2013, 29, 5394−5406.
(9) Hu, D.; Hu, Y.; Huang, W.; Zhang, Q. Two-photon induced data
storage in hydrogen bonded supramolecular azopolymers. Opt.
Commun. 2012, 285, 4941−4945.
found to give doughnut-shaped assemblies from acetone
through the intermediary of fibers. This shape-dependent self-
processing of lipid assemblies is remarkable and could be useful
in the future design of new nano- or micrometer-sized
molecular aggregates for diverse applications. Formation of
twisted ribbons from some of the achiral lipids with alkyl chain
lengths in the range C10−C13 is another unique finding and
indicates that chirality in individual lipids is not an absolute
requirement for getting supramolecular chirality in this class of
compounds. Most of the existing reports on hierarchical
preferences of lipids make use of chiral component either as
part of the lipid, counterion or as additives. The findings
reported here show that asymmetric packing of achiral systems
also can give curvature effects in their assemblies.
(10) Crispini, A.; Ghedini, M.; Pucci, D. Functional properties of
metallomesogens modulated by molecular and supramolecular exotic
arrangements. Beilstein J. Org. Chem. 2009, 5, 54.
(11) Donnio, B.; Buathong, S.; Bury, I.; Guillon, D. Liquid crystalline
dendrimers. Chem. Soc. Rev. 2007, 36, 1495−1513.
(12) Buerkle, L. E.; Rowan, S. J. Supramolecular gels formed from
multi-component low molecular weight species. Chem. Soc. Rev. 2012,
41, 6089−6102.
(13) Massiot, P.; Imperor-Clerc, M.; Veber, M.; Deschenaux, R.
Supramolecular metallomesogens: Hydrogen-bonded ferrocene-con-
taining liquid crystals which display bicontinuous cubic phases. Chem.
Mater. 2005, 17, 1946−1951.
ASSOCIATED CONTENT
* Supporting Information
■
S
(14) Wu, Y.; Hirai, Y.; Tsunobuchi, Y.; Tokoro, H.; Eimura, H.;
Yoshio, M.; Ohkoshi, S.; Kato, T. Supramolecular approach to the
formation of magneto-active physical gels. Chem. Sci. 2012, 3, 3007−
3010.
(15) Ganesan, M.; Muraleedharan, K. M. Oxanorbornane-based
amphiphilic systems: design, synthesis and material properties. RSC
Adv. 2012, 2, 4048−4051.
Synthetic schemes and spectral data of the amphiphiles, plots of
PXRD data, large area views of SEM images, single-crystal XRD
1
data, and H and 13C NMR spectra of all compounds. This
material is available free of charge via the Internet at http://
(16) Dumoulin, F.; Lafont, D.; Boullanger, P.; Mackenzie, G.; Mehl,
G. H.; Goodby, J. W. Self-organizing properties of natural and related
synthetic glycolipids. J. Am. Chem. Soc. 2002, 124, 13737−13748.
(17) Vemula, P. K.; John, G. Crops: A green approach toward self-
assembled soft materials. Acc. Chem. Res. 2008, 41, 769−782.
(18) Tsafrir, I.; Sagi, D.; Arzi, T.; Guedeau-Boudeville, M. A.; Frette,
V.; Kandel, D.; Stavans, J. Pearling instabilities of membrane tubes
with anchored polymers. Phys. Rev. Lett. 2001, 86, 1138−1141.
(19) Jung, J. H.; John, G.; Yoshida, K.; Shimizu, T. Self-assembling
structures of long-chain phenyl glucoside influenced by the
introduction of double bonds. J. Am. Chem. Soc. 2002, 124, 10674−
10675.
(20) Oda, R.; Huc, I.; Schmutz, M.; Candau, S. J.; MacKintosh, F. C.
Tuning bilayer twist using chiral counterions. Nature 1999, 399, 566−
569.
(21) Berthier, D.; Buffeteau, T.; Leger, J. M.; Oda, R.; Huc, I. From
chiral counterions to twisted membranes. J. Am. Chem. Soc. 2002, 124,
13486−13494.
(22) Ziserman, L.; Lee, H. Y.; Raghavan, S. R.; Mor, A.; Danino, D.
Unraveling the mechanism of nanotube formation by chiral self-
assembly of amphiphiles. J. Am. Chem. Soc. 2011, 133, 2511−2517.
(23) Lin, Y.; Wang, A.; Qiao, Y.; Gao, C.; Drechsler, M.; Ye, J.; Yan,
Y.; Huang, J. Rationally designed helical nanofibers via multiple non-
covalent interactions: Fabrication and modulation. Soft Matter 2010, 6,
2031−2036.
(24) Spector, M. S.; Singh, A.; Messersmith, P. B.; Schnur, J. M.
Chiral self-assembly of nanotubules and ribbons from phospholipid
mixtures. Nano Lett. 2001, 1, 375−378.
(25) Tu, Z. C.; Seifert, U. Concise theory of chiral lipid membranes.
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2007, 76, 031603/1−
031603/14.
AUTHOR INFORMATION
Corresponding Author
4202. Tel: +91 44 2257 4233.
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support of this work by the Department of Science
and Technology, INDIA (Grants SR/NM/NS-1034/2012) is
gratefully acknowledged. We also thank SAIF (IITM) for
HRSEM facility, Dr. Edamana Prasad (Department of
chemistry, IITM) for DLS facility, Dr. Babu Varghese (SAIF,
IITM) and Mr. V. Ramkumar (Department of chemistry,
IITM) for single-crystal XRD analyses, and Ms. Srividya
(Department of chemistry, IITM) for PXRD data. D.S.J. thanks
CSIR for fellowship.
REFERENCES
■
(1) Ramanathan, M.; Shrestha, L. K.; Mori, T.; Ji, Q.; Hill, J. P.; Ariga,
K. Amphiphile nanoarchitectonics: from basic physical chemistry to
advanced applications. Phys. Chem. Chem. Phys. 2013, 15, 10580−
10611.
(2) Ikeda, M. Bioinspired supramolecular materials. Bull. Chem. Soc.
Jpn. 2013, 86, 10−24.
(3) Zheng, Y. B.; Pathem, B. K.; Hohman, J. N.; Thomas, J. C.; Kim,
M.; Weiss, P. S. Photoresponsive molecules in well-defined nanoscale
environments. Adv. Mater. 2013, 25, 302−312.
(26) Oda, R.; Artzner, F.; Laguerre, M.; Huc, I. Molecular structure
of self-assembled chiral nanoribbons and nanotubules revealed in the
hydrated state. J. Am. Chem. Soc. 2008, 130, 14705−14712.
(27) Yagai, S.; Aonuma, H.; Kikkawa, Y.; Kubota, S.; Karatsu, T.;
Kitamura, A.; Mahesh, S.; Ajayaghosh, A. Rational design of nanofibers
and nanorings through complementary hydrogen-bonding interactions
of functional π systems. Chem.Eur. J. 2010, 16, 8652−8661.
(28) Huang, H.; Chung, B.; Jung, J.; Park, H. W.; Chang, T. Toroidal
micelles of uniform size from diblock copolymers. Angew. Chem., Int.
Ed. 2009, 48, 4594−4597.
(4) Shimizu, T.; Masuda, M.; Minamikawa, H. Supramolecular
nanotube architectures based on amphiphilic molecules. Chem. Rev.
2005, 105, 1401−1443.
(5) John, G.; Vemula, P. K. Design and development of soft
nanomaterials from biobased amphiphiles. Soft Matter 2006, 2, 909−
914.
(6) Lin, S. C.; Lin, T. F.; Ho, R. M.; Chang, C. Y.; Hsu, C. S.
Hierarchical superstructures with helical sense in self-assembled achiral
banana-shaped liquid crystalline molecules. Adv. Funct. Mater. 2008,
18, 3386−3394.
(7) Vidyasagar, A.; Handore, K.; Sureshan, K. M. Soft optical devices
from self-healing gels formed by oil and sugar-based organogelators.
Angew. Chem., Int. Ed. 2011, 50, 8021−8024.
(29) Djalali, R.; Samson, J.; Matsui, H. Doughnut-shaped peptide
nano-assemblies and their applications as nanoreactors. J. Am. Chem.
Soc. 2004, 126, 7935−7939.
15189
dx.doi.org/10.1021/la4034172 | Langmuir 2013, 29, 15182−15190