Chemistry - A European Journal
10.1002/chem.201700839
COMMUNICATION
To explore this possibility, we aimed to investigate the cellular Acknowledgements
redox changes during the different stages of apoptosis. HepG2
cells were induced to undergo apoptosis by a well-known
anticancer drug, paclitaxel and ratiometric changes in the GSH
levels of Sq labeled cells were recorded at 0, 2, 4 and 6 hours
respectively (Figure 4A-D). The high levels of GSH indicated by
A.A. is grateful to SERB, Department of Science and
Technology, Govt. of India, for a J. C. Bose National Fellowship
(
SERB Order No. SB/S2/JCB-11/2014). K.K.M. wish to thank
CSIR network project CSC-0134, BSC-0112 and DBT
BT/PR14698/NNT/28/832/2015), Govt. of India for research
(
an intense green emission and a weak red emission during the
funding. S.G. and P.A. thank UGC and CSIR for research
fellowships, respectively. M.M.J. acknowledges KBC-KSCSTE,
Govt. of Kerala for the postdoctoral research fellowship.
th
0
hour showed a noticeable drop in the green channel and a
nd
dramatic enhancement in the red channel at the 2 hour,
resulting in approximately 1.9 fold decline in the emission ratio.
The emission ratio further exhibited a drop by 1.98 fold during
Keywords: apoptosis • fluorescence imaging • squaraines •
th
the 4 hour resulting in a significant enhancement in the red
glutathione • cancer
channel and a noticeable decrease in the green channel. At the
th
6
hour, no significant changes in the red or green emission was
[
[
1]
2]
R. S. Hotchkiss, A. Strasser, J. E. McDunn, P. E. Swanson, New Engl.
J. Med. 2009, 361, 1570–1583.
observed and the ratio of emission intensities reached more or
th
less the same value as that observed in the 4 hour. These
a) D. A. Carson, J. M. Ribeiro, Lancet 1993, 341, 1251–1254; b) L. A.
Herzenberg, S. C. De Rosa, J. G. Dubs, M. Roederer, M. T. Anderson,
S. W. Ela, S. C. Deresinski, Proc. Natl. Acad. Sci. USA 1997, 94,
results underpin the fact that GSH extrusion occurs at the onset
of apoptosis, declines at a faster rate during the initial stages
and attains a stable level, causing an increase in the level of
reactive oxygen species and thereby facilitating efficient cell
death. To reaffirm this point, we have monitored the ROS
generation in cells using dichlorofluorescein diacetate (DCFDA)
assay for the same time intervals and found that GSH depletion
causes an obvious increase in the level of ROS as shown in
Supporting Information Figure S15. These changes in the GSH
levels were found to be well correlating with the apoptotic
progression as evidenced by the conventional apoptotic assay
using acridine orange-ethidium bromide staining (Supporting
Information Figure S16). In order to gain a quantitative picture of
the apoptotic process, we further monitored the emission
responses of Sq towards apoptosis induced HepG2 cell lysates
during different intervals between 0-8 h (Figure 4E). At the onset,
HepG2 cells possessed high levels of GSH amounting to about
1
967–1972; c) H. Refsum, P. M. Ueland, O. Nygard, S. E. Vollset,
Annu. Rev. Med. 1998, 49, 31–6; d) A. Haunstetter, S. Izumo, Circ. Res.
998, 82, 1111–1129; e) S. Seshadri, A. Beiser, J. Selhub, P. F.
1
Jacques, I. H. Rosenberg, R. B. D’. Agostino, P. W. F. Wilson, New
Engl. J. Med. 2002, 346, 476–483.
[
3]
a) Y. Wu, D. Xing, S. Luo, Y. Tang, Q. Chen, Cancer Lett. 2006, 235,
2
39–247; b) L. E. Edgington, A. B. Berger, G. Blum, V. E. Albrow, M. G.
Paulick, N. Lineberry, M. Bogyo, Nat. Med. 2009, 15, 967–973; c) K.
Boeneman, B. C. Mei, A. M. Dennis, G. Bao, J. R. Deschamps, H.
Mattouss, I. L. Medintz, J. Am. Chem. Soc. 2009, 131, 3828–3829; d) N.
Dai, J. Guo, Y. N. Teo, E. T. Kool, Angew. Chem. Int. Ed. 2011, 50,
5
105–5109; Angew. Chem. 2011, 123, 5211–5215; e) Q. D. Nguyen, I.
Lavdas, J. Gubbins, G. Smith, R. Fortt, L. S. Carroll, M. A. Graham, E.
O. Aboagye, Clin. Cancer Res. 2013, 19, 3914–3924.
[
[
[
4]
5]
6]
a) A. Petrovsky, E. Schellenberger, L. Josephson, R. Weissleder, A.
Bogdanov, Cancer Res. 2003, 63, 1936–1942; b) G. A. F. van Tilborg,
W. J. M. Mulder, P. T. K. Chin, G. Storm, C. P. Reutelingsperger, K.
Nicolay, G. J. Strijkers, Bioconjugate Chem. 2006, 17, 865–868.
a) Y. A. Loannou, F. W. Chen, Nucl. Acids Res. 1996, 24, 992–993; b) P.
R. Walker, J. Leblanc, B. Smith, S. Pandey, M. Sikorska, Methods 1999,
5
.30 ± 0.1 mM which decreased to 2.26 ± 0.2 mM after two
hours. In another two hour, it dropped down to 1.26 ± 0.2 mM
th
th
and the GSH level during the 6 and 8 hours turned out to be
.02 ± 0.3 mM and 0.96 ± 0.15 mM respectively. These results
1
7, 329–338; c) D. Matassov, T. Kagan, J. Leblanc, M. Sikorska, Z.
1
Zakeri, Mol Biol. 2004, 282, 1–17.
were also validated by the commercial GSH assay kit,
reaffirming the reliability of our probe in estimating the
intracellular GSH changes during apoptosis (Supporting
Information Table S1). Collectively, these results imply the
immense potential of Sq for the ratiometric detection of
apoptosis on both qualitative and quantitative grounds.
a) P. Marchetti, D. Decaudin, A. Macho, N. Zamzami, T. Hirsch, S. A.
Susin, G. Kroemer, Eur. J. Immunol. 1997, 27, 289–296; b) R. N. T.
Coffey, R. W. G. Watson, N. J. Hegarty, A. O’ Neill, N. Gibbons, H. R.
Brady, J. M. Fitzpatrick, Cancer 2000, 88, 2092–2104; c) M. L. Circu, T.
Y. Aw, Free Radic Res. 2008, 42, 689–706.
[
[
7]
8]
C. Hwang, A. J. Sinskey, H. F. Lodish, Science 1992, 257, 1496–1502.
a) R. Franco, M. I. Panayiotidis, J. A. Cidlowski, J. Biol. Chem. 2007,
In conclusion, we have successfully developed a squaraine
based fluorescent sensor for the quantitative ratiometric
fluorescence imaging of GSH, leading to the visualization of the
redox process during apoptosis. The favorable attributes of high
biocompatibility, excellent membrane permeability and fast
response inspired us to utilize the Sq dye for detecting the
intracellular GSH concentrations in live cells and cell extracts.
The probe afforded a promising strategy for discriminating
cancer cells from normal cells via the investigation of cellular
redox status. Further applicability of the probe was elucidated by
developing an easy and reliable method for the on-demand
apoptotic progression assay in real-time by probing the role of
GSH during various time spans of apoptosis on both semi-
quantitative and quantitative grounds. These results open before
us a new non-invasive pathway for diagnosing apoptosis, which
is of prime importance in drug discovery and the effective follow-
up of treatment responses.
2
82, 30452–30465; b) A. L. Ortega, S. Mena, J. M. Estrela, Cancers
011, 3, 1285–1310; c) J. S. Armstrong, K. K. Steinauer, B. Hornung, J.
2
M. Irish, P. Lecane, G. W. Birrell, D. M. Peehl, S. J. Knox, Cell Death
Differ. 2002, 9, 252-263.
[
[
[
9]
a) A. Fernandez, J. Kiefer, L. Fosdick, J. McConkey, J. Immunol. 1995,
155, 5133–5139; b) R. Franco, O. J. Schoneveld, A. Pappa, M. I.
Panayiotidis, Arch. Physiol. Biochem. 2007, 113, 234–258.
10] C. Tormos, F. J. Chaves, M. J. Garcia, F. Garrido, R. Jover, J. E.
O’Connor, A. Iradi, A. Oltra, M. R. Oliva, G. T. Saez, Cancer Lett. 2004,
2
08, 103–113.
11] a) M. Zhang, M. Yu, F. Li, M. Zhu, M. Li, Y. Gao, L. Li, Z. Liu, J. Zhang,
D. Zhang, T. Yi, C. Huang, J. Am. Chem. Soc. 2007, 129,10322–
1
0323; b) S. Sreejith, K. P. Divya, A. Ajayaghosh, Angew. Chem., Int.
Ed. 2008, 47, 7883–7887; Angew. Chem. 2008, 120, 8001–8005; c) D.
G. Cho, J. L. Sessler, Chem. Soc. Rev. 2009, 38, 1647–1662; d) L. Yi,
H. Li, L. Sun, L. Liu, C. Zhang, Z. Xi, Angew. Chem., Int. Ed. 2009, 48,
4
034–4037; Angew. Chem. 2009, 121, 4094–4097; e) M. H. Lee, Z.
Yang, C.W. Lim, Y. H. Lee, S. Dongbang, C. Kang, J. S. Kim, Chem.
Rev. 2013, 113, 5071–5109; f) H. S. Jung, X. Chen, J. S. Kim, J. Yoon,
Chem Soc. Rev. 2013, 42, 6019–6031; g) C. Yin, F. Huo, J. Zhang, R.
This article is protected by copyright. All rights reserved.