Organometallics
Article
Miyaura Coupling. Angew. Chem., Int. Ed. 2012, 51, 8834−8837.
(e) Bedford, R. B.; Brenner, P. B.; Carter, E.; Carvell, T. W.;
Cogswell, P. M.; Gallagher, T.; Harvey, J. N.; Murphy, D. M.; Neeve,
E. C.; Nunn, J.; Pye, D. R. Expedient Iron-Catalyzed Coupling of
Alkyl, Benzyl and Allyl Halides with Arylboronic Esters. Chem. - Eur. J.
2014, 20, 7935−7938. (f) Bedford, R. B.; Brenner, P. B.; Carter, E.;
Clifton, J.; Cogswell, P. M.; Gower, N. J.; Haddow, M. F.; Harvey, J.
N.; Kehl, J. A.; Murphy, D. M.; Neeve, E. C.; Neidig, M. L.; Nunn, J.;
Snyder, B. E. R.; Taylor, J. Iron Phosphine Catalyzed Cross-Coupling
of Tetraorganoborates and Related Group 13 Nucleophiles with Alkyl
Halides. Organometallics 2014, 33, 5767−5780. (g) Crockett, M. P.;
Tyrol, C. C.; Wong, A. S.; Li, B.; Byers, J. A. Iron-Catalyzed Suzuki−
Miyaura Cross-Coupling Reactions between Alkyl Halides and
Unactivated Arylboronic Esters. Org. Lett. 2018, 20, 5233−5237.
(11) For an example of a reported Co- or Fe-catalyzed Suzuki biaryl
cross-coupling performed under extremely high pressure, see: Guo, Y.;
Young, D. J.; Hor, T. S. A. Palladium-free Suzuki−Miyaura cross-
coupling at elevated pressures. Tetrahedron Lett. 2008, 49, 5620.
(12) (a) Bedford, R. B.; Gallagher, T.; Pye, D. R.; Savage, W.
Towards Iron-Catalysed Suzuki Biaryl Cross-Coupling: Unusual
Reactivity of 2-Halobenzyl Halides. Synthesis 2015, 47, 1761−1765.
(b) O’Brien, H. M.; Manzotti, M.; Abrams, R. D.; Elorriaga, D.;
Sparkes, H. A.; Davis, S. A.; Bedford, R. B. Iron-catalysed substrate-
directed Suzuki biaryl cross-coupling. Nat. Catal. 2018, 1, 429−437.
(13) (a) Kumar, L. M.; Bhat, B. R. Cobalt pincer complex catalyzed
Suzuki-Miyaura cross coupling − A green approach. J. Organomet.
Chem. 2017, 827, 41−48. (b) Kumar, L. M.; Ansari, R. M.; Bhat, B. R.
Catalytic activity of Fe(II) and Cu(II) PNP pincer complexes for
Suzuki coupling reaction. Appl. Organomet. Chem. 2017, 32,
No. e4054. (c) Ansari, R. M.; Bhat, B. R. Schiff base transition
metal complexes for Suzuki−Miyaura cross-coupling reaction. J.
Chem. Sci. 2017, 129, 1483−1490. (d) Ansari, R. M.; Kumar, L. M.;
Bhat, B. R. Air-Stable Cobalt(II) and Nickel(II) Complexes with
Schiff Base Ligand for Catalyzing Suzuki−Miyaura Cross-Coupling
Reaction. Russ. J. Coord. Chem. 2018, 44, 1−8. (e) Ansari, R. M.;
Mahesh, L. K.; Bhat, B. R. Cobalt Schiff base Complexes: Synthesis
Characterization and Catalytic Application in Suzuki-Miyaura
Co(II), Ni(II) and Cu(II) reported in the same paper; the lack of any
peak corresponding to 65Cu in the latter case is particularly
noteworthy.
(20) (a) Elerman, Y.; Paulus, H. A Five-Coordinate Bis(p-
bromophenyl- salicylaldimino)chloroiron(HI) Complex. Acta Crys-
tallogr., Sect. C: Cryst. Struct. Commun. 1996, C52, 1971−1973.
(b) Fazekas, E.; Nichol, G. S.; Garden, J. A.; Shaver, M. P. Iron(III)
Half Salen Catalysts for Atom Transfer Radical and Ring-Opening
Polymerizations. ACS Omega 2018, 3, 16945−16953.
(21) Examples: (a) Wang, L.; Sun, W.-H.; Han, L.; Li, Z.; Hu, Y.;
He, C.; Yan, C. Cobalt and nickel complexes bearing 2,6-bis (imino)
phenoxy ligands: syntheses, structures and oligomerization studies. J.
Organomet. Chem. 2002, 650, 59−64. (b) Du, J.; Han, L.; Cui, Y.; Li,
J.; Li, Y.; Sun, W.-H. Synthesis, Characterization, and Ethylene
Oligomerization of 2,6-Bis(imino)phenoxy Cobalt Complexes. Aust. J.
Chem. 2003, 56, 703−706. (c) Salehi, M.; Hasanzadeh, M.
Characterization, crystal structures, electrochemical and antibacterial
studies of four new binuclear cobalt(III) complexes derived from o-
aminobenzyl alcohol. Inorg. Chim. Acta 2015, 426, 6−14.
(22) The B3LYP functional has been shown to correctly predict the
ground state of various Co(II) complexes, see, for example: Pietrzyk,
P.; Srebro, M.; Radon, M.; Sojka, Z.; Michalak, A. Spin Ground State
and Magnetic Properties of Cobalt(II): Relativistic DFT Calculations
Guided by EPR Measurements of Bis(2,4-acetylacetonate)cobalt(II)-
Based Complexes. J. Phys. Chem. A 2011, 115, 2316−2324.
(23) This contrasts with the ESI spectrum reported by Bhat for the
supposed complex 7, which shows a peak at m/z = 380.10, again
notably devoid of an isotope pattern. See ref 13e.
(25) It is also worth noting that related pyridyl-NH-P(O)Ph2
adducts of copper(II) are known, see: Yeh, C.-W.; Chang, K.-H.;
Hu, C.-Y.; Hsu, W.; Chen, J.-D. Syntheses, structures and ligand
conformations of Cu(II), Co(II) and Ag(I) complexes containing the
phosphinic amide ligands. Polyhedron 2012, 31, 657.
(26) (a) Tisato, F.; Vallotto, F.; Pilloni, G.; Refosco, F.; Corvaja, C.;
Corain, B. [Cu(H2dped)](BF4)2(H2dped N,N′-bis(2-
(diphenylphosphino)phenyl)ethane-1,2-diamine): a stable phosphine
complex of copper(II). J. Chem. Soc., Chem. Commun. 1994, 2397.
̈
̈
(b) Adner, D.; Mockel, S.; Korb, M.; Buschbeck, R.; Ruffer, T.;
Schulze, S.; Mertens, L.; Hietschold, M.; Mehring, M.; Lang, H.
Copper(II) and triphenylphosphine copper(I) ethylene glycol
carboxylates: synthesis, characterisation and copper nanoparticle
generation. Dalton Trans. 2013, 42, 15599−15609.
(14) Professor Bhat was contacted several times regarding our
findings, the first time over 8 months before submission of this
manuscript, and he stands by his original claims. Meanwhile the
editors of the five journals in question were contacted 4 months
before submission. We thank the editors-in-chief of J. Organomet.
Chem. and J. Chem. Sci. for responding.
(27) (a) Pan, Z.; Gamer, M. T.; Roesky, P. W. Copper(I) and
Gold(I) Complexes with N,N′-Bis(diphenylphosphino)-2,6-diamino-
pyridine as Ligand: Synthesis and Molecular Structures. Z. Anorg. Allg.
Chem. 2006, 632, 744. (b) Arce, P.; Vera, C.; Escudero, D.; Guerrero,
J.; Lappin, A.; Oliver, A.; Jara, D. H.; Ferraudi, G.; Lemus, L.
Structural diversity in Cu(I) complexes of the PNP ligand: from
pincer to binuclear coordination modes and their effects upon the
electrochemical and photophysical properties. Dalton Trans. 2017, 46,
13432.
(15) (a) Pradhan, K.; Selvaraj, K.; Nanda, A. K. A Convenient
Approach to the Synthesis of Different Types of Schiff’s Bases and
Their Metal Complexes. Chem. Lett. 2010, 39, 1078−1079.
(b) Chong, J. H.; Ardakani, S. J.; Smith, K. J.; MacLachlan, M. J.
Triptycene-Based Metal SalphensExploiting Intrinsic Molecular
Porosity for Gas Storage. Chem. - Eur. J. 2009, 15, 11824−11828.
́
(c) Escudero-Adan, E. C.; Benet-Buchholz, J.; Kleij, A. W. Expedient
(28) Benito-Garagorri, D.; Becker, E.; Wiedermann, J.; Lackner, W.;
Pollak, M.; Mereiter, K.; Kisala, J.; Kirchner, K. Achiral and Chiral
Transition Metal Complexes with Modularly Designed Tridentate
PNP Pincer-Type Ligands Based on N-Heterocyclic Diamines.
Organometallics 2006, 25, 1900−1913.
Method for the Transmetalation of Zn(II)-Centered Salphen
Complexes. Inorg. Chem. 2007, 46, 7265−7267. (d) Mehta, B. H.;
Joishar, D. X-Ray Crystallography and Biological Studies of Iron(II),
Cobalt(II) and Nickel(II) Complexes Derived from Bidentate Schiff
Bases. Asian J. Chem. 2005, 17, 1041−1049.
(16) Baretield, E. K.; Busch, D. H.; Nelson, S. M. Iron, cobalt, and
nickel complexes having anomalous magnetic moments. Q. Rev.,
Chem. Soc. 1968, 22, 457.
̈
(29) Rosler, S.; Obenauf, J.; Kempe, R. A Highly Active and Easily
Accessible Cobalt Catalyst for Selective Hydrogenation of CO
Bonds. J. Am. Chem. Soc. 2015, 137, 7998−8001.
(30) Searches performed 20th December 2018, using a phenolate
ligand, with an ortho-OMe and an ortho C−N (with “any bond”
selected between the C and N) and bonds between the three
heteroatom donors and a single metal (set as both “any transition
metal” and “any metal”).
(31) An examination of Bhat’s papers (ref 13) shows that this
remarkable insensitivity extends to variations in other parameters as
well. For instance, replotting the results from the variation in solvents
in the same reaction, catalysed by 9 or 11 (ref 13b) shows that while
(17) Hobday, M. D.; Smith, T. D. N,N′-ethylenebis-
(salicylideneiminato) transition metal ion chelates. Coord. Chem.
Rev. 1973, 9, 311−337.
(18) van den Bergen, A.; Murray, K. S.; O’Connor, M. J.; Rehak, N.;
West, B. O. N-Substituted salicylaldimine complexes of iron(III). I.
Synthesis, infrared and mass spectra. Aust. J. Chem. 1968, 21, 1505−
15.
(19) Similarly intriguing is the complete lack of isotope patterns
observed in the mass spectra of the analogous ML2 complexes of
G
Organometallics XXXX, XXX, XXX−XXX