A.H. Ahmed, M.S. Thabet / Journal of Molecular Structure 1006 (2011) 527–535
535
Å
þ
Highly oxidative radicals þ dye
[5] F. Bedioui, Coord. Chem. Rev. 144 (1995) 39.
6] M.S. Niasari, M. Shaterian, J. Porous Mater. 15 (5) (2008) 581.
[
!
CO
2
þ H
2
O þ Mineralization Product
ð4Þ
[7] J. Poltowicz, K. Pamin, E. Tabor, J. Haber, A. Adamski, Z. Sojka, Appl. Catal. A:
Gen. 299 (2006) 235.
[
[
8] M.R. Maurya, S.J.J. Titinchi, S. Chand, J. Mol. Catal. A: Gen. 214 (2004) 257.
9] (a) A.H. Ahmed, J. Mol. Stuct. 839 (2007) 10;
Highly oxidative radicals þ CuðIÞ sites
(
(
(
b) A.H. Ahmed, J. Appl. Sci. Res. 3 (12) (2007) 1663;
c) T.M. Salama, A.H. Ahmed, Z.M. El-Bahy, Micropor. Mesopor. Mater. 89
2006) 251;
!
deactivated radicals þ CuðIIÞ sites
ð5Þ
ð6Þ
Ådyeþ þ CuðIÞ sites ! dye þ CuðIIÞ sites
Eqs. (1)–(4) describe the formation of highly oxidative radicals
and the degradation processes of the dye, while Eqs. (5) and (6) de-
scribe the quenching of highly oxidative radicals and the deactiva-
tion of the free radical intermediate of the dye.
(d) Ayman H. Ahmed, Zeinhom M. El-Bahy, Tarek M. Salama, J. Mol. Struct. 969
(
(
2010) 9;
e) A.H. Ahmed, A.G. Mostafa, Mater. Sci. Eng. C – Biol. Sci. 29 (2009) 877.
[
[
10] G.A. Ozin, C. Gil, Chem. Rev. 89 (1989) 1749.
11] P.A. Jacobs, Stud. Surf. Sci. Catal. 157 (2005) 289.
[12] (a) D.X. West, A.E. Libertia, S.B. Padhye, P.B. Chikate, A.S. Sonawane, Coord.
Chem. Rev. 123 (1993) 49;
(
(
b) Martinez, C. Hemmert, H. Gornitzka, B. Meunier, J. Organomet. Chem. 690
2005) 2163;
4
. Conclusions
(c) G. Cerchiaro, G.A. Micke, M.F.M. Tavares, A.M.C. Ferreira, J. Mol. Catal. A:
Chem. 221 (2004) 29;
(
d)J. Mol. Catal. A: Chem. 202 (2003) 253.
13] M.R. Maurya, A.K. Chandrakar, S. Chand, J. Mol. Catal. A: Gen. 263 (2007) 227.
[14] (a) E.I. Pleskushkina, A.N. Nikolaevskii, T.A. Filippenko, Russ. J. Appl. Chem. 174
The results suggest that transition metal complexes of SAPH li-
[
gand [M = Cu(II), Co(II) and Ni(II)] can be accommodated in the
super cages of zeolite-Y by FL method without any strain. Spectro-
scopic techniques, chemical analysis, magnetism, thermogravimet-
ric and XRD patterns as well as surface area and nitrogen
adsorption measurements prove to be essential tools for identify-
ing and characterizing the metal(II) species formed inside the zeo-
lite-Y. The results showed that, SAPH can coordinate to Cu(II),
Co(II) and Ni(II) ions through the (C@N), phenolic (OH) and (NH)
groups forming numerous structures around the central metal
atom. The resulting compositions and structures for the encapsu-
lated complexes are differ from those formed under ordinary con-
ditions due to the zeolite constraints and the different synthesis
conditions. The involvement of zeolite oxygen (Oz) in coordination
was suggested assuming the change in the positions and features
of some zeolite sensitive bands. The immobilized SAPH complexes
have greater thermal stability due to the zeolite shielding. It is
authenticated by catalytic activity results that, decolorization of
dye is facilitated by presence of zeolite encapsulated Cu(II), Co(II)
(
(
5) (2001) 793;
b) B.E. Love, E.G. Jones, J. Org. Chem. 64 (1999) 3755.
[
[
15] (a) L. Hanter, I.A. Marriott, J. Chem. Soc. (1937) 2000;
(b) T.V. Troepol’skaya, E.N. Munin, Z.S. Titova, Yu.P. Kitaev, Russ. Chem. Bull. 27
(
1978) 777.
16] A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, fourth ed., Longman,
London, 1989.
[17] Z. Rappoport (Ed.), Handbook of Tables for Organic Compound Identification,
third ed., The Chemical Rubber Co., Cleveland, 1967.
[
[
18] E.M. Flanicen, H. Khatami, H.A. Szymanski, Adv. Chem. Ser. 101 (1971) 201.
19] W.G. Ewing, Instrumental Methods of Chemical Analysis, fourth ed., McGraw-
Hill, Kogakusha, 1975;
A.I. Vogel, A Text Book of Practical Organic Chemistry, third ed., Longman,
1975;
K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds,
second ed., Wiley-Interscience, 1970.
[20] L. Sacconi, M. Ciampolini, J. Chem. Soc. 276 (1964).
[
21] (a) A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier Publishing
Company, Amsterdam, 1968;
(
b) A.B.P. Lever, D. Ogden, J. Chem. Soc. 2041 (1967);
(c) L. Sacconi, I. Bertini, R. Morassi, Inorg. Chem. 6 (8) (1967) 1548.
22] W.H. Quayle, J.H. Lunsford, Inorg. Chem. 21 (1982) 2226.
23] W.H. Quayle, G. Peeters, G.L. De Roy, E.F. Vansant, J.H. Lunsford, Inorg. Chem.
[
[
II
and Ni(II)–hydrazone complex catalysts, M (SAPH)/Y. Comparison
21 (1982) 2226.
of the photocatalytic activity of different catalysts has clearly
showed that Cu (SAPH)/Y is better photocatalyst for decolorization
of acid violtet-1 dye (76%). Photocatalytic decolorization reaction
follows pseudo-first order kinetics.
[24] M.N. Bae, M.K. Song, Y. Kim, Bull. Kor. Chem. Soc. 22 (2001) 1081.
[25] G.M. Schwab, E. Schwab-agallidis, J. Am. Chem. Soc. 17 (1949) 1806.
II
[
26] S. Brunauer, L.S. Deming, W.S. Deming, E. Teller, J. Am. Chem. Soc. 62 (1940)
723.
[27] (a) Z.M. El-Bahy, M.M. Mohamed, F.I. Zidan, M.S. Thabet, J. Hazard. Mater. 153
1
(
(
2008) 364;
b) M.M. Mokhtar, F.I. Zidan, M. Thabet, Micropor. Mesopor. Mater 108 (2008)
References
193.
[
28] B. Neppolian, H.C. Choi, S. Sakthivel, V. Banumathi, A. Murugesan, J. Hazard.
Mater. B89 (2002) 303.
[
[
[
[
1] R. Ando, H. Ono, T. Yagyu, M. Maeda, Inorg. Chim. Acta 357 (2004) 817.
2] M.R. Maurya, A. Kumar, J. Mol. Cat. A: Gen. 250 (2006) 190.
3] D.C. Sherrington, Catal. Today 57 (2000) 87.
4] K.J. Balkus Jr, A.G. Gabrielove, in: N. Herron, D. Corbin (Eds.), Inclusion
Chemistry with Zeolites, Nanoscale Materials by Design, Kluwer, Dordrecht,
[29] J.X. Chen, L.Z. Zhu, Catal. Today 126 (2007) 463.
[30] J.X. Chen, L.Z. Zhu, Chemosphere 65 (2006) 1249.
[31] C. Walling, A. Goosen, J. Am. Chem. Soc. 95 (1973) 2987.
[32] J. De Laat, H. Gallard, Environ. Sci. Technol. 33 (1999) 2726.
1
995, p. 159.