Journal of the American Chemical Society
Communication
tatb (note: this structure is also referred to as PCN-333)21 is in
excellent agreement with the value reported for the analogous
Al-based MOF, PCN-333 (3.81 cm3/g).39 The electrochemi-
cally synthesized materials also feature larger and more well-
defined particle sizes (Figure 4) and increased crystallinities
REFERENCES
■
(1) Honicke, I. M.; Senkovska, I.; Bon, V.; Baburin, I. A.; Bonisch,
N.; Raschke, S.; Evans, J. D.; Kaskel, S. Balancing Mechanical Stability
and Ultrahigh Porosity in Crystalline Framework Materials. Angew.
Chem., Int. Ed. 2018, 57, 13780−13783.
(2) Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C.
E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydin, A. O.;
Hupp, J. T. Metal-Organic Framework Materials with Ultrahigh
Surface Areas: Is the Sky the Limit? J. Am. Chem. Soc. 2012, 134,
15016−15021.
(3) Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi,
E.; Yazaydin, O.; Snurr, R. Q.; O’Keefe, M.; Kim, J.; Yaghi, O. M.
Ultrahigh Porosity in Metal-Organic Frameworks. Science 2010, 329,
424−428.
(4) Nguyen, J. G.; Cohen, S. M. Moisture-Resistant and Super-
hydrophobic Metal-Organic Frameworks Obtained via Postsynthetic
Modification. J. Am. Chem. Soc. 2010, 132, 4560−4561.
(5) Zhao, D.; Timmons, D. J.; Yuan, D.; Zhou, H.-C. Tuning the
Topology and Functionality of Metal-Organic Frameworks by Ligand
Design. Acc. Chem. Res. 2011, 44, 123−133.
(6) Yaghi, O. M.; O’Keefe, M.; Ockwig, N. W.; Chae, H. K.;
Eddaoudi, M.; Kim, J. Reticular Synthesis and the design of new
materials. Nature 2003, 423, 705−714.
(7) Furukawa, H.; Cordova, K. E.; O’Keefe, M.; Yaghi, O. M. The
Chemistry and Applications of Metal-Organic Frameworks. Science
2013, 341, 1230444.
In conclusion, we have leveraged electrochemical methods
to synthesize reduced metal−organic frameworks. Electro-
chemical synthesis of TiIII-MIL-101, TiIII-MIL-100, TiIII-MIL-
101-bpdc, and TiIII-MIL-100-tatb using the inexpensive,
accessible, and highly pure Ti4+-based starting material,
TiCl4, generated frameworks with crystallinities and adsorption
properties that are as good or superior to those of materials
synthesized using exogenous/commercial TiCl3. The electro-
chemically mediated synthetic strategy we have developed has
provided the first reported route to TiIII-MIL-100 and to high-
quality samples of Ti3+-based MOFs with extended pore
structures and surface areas that approach 6000 m2/g.
The electrosynthetic methods disclosed in this report not
only generate the high-purity Ti3+ ions from which TiIII-MIL-
101 and TiIII-MIL-100 structure types are built, but also
provide a means to manage solution pH, as the H+ ions
generated upon formation of the frameworks’ Ti3+−O2C−Ar
bonds are readily reduced and evolved as H2 gas. Accordingly,
the methods outlined herein provide a new strategy for the
electrochemically mediated synthesis of new redox-active
metal−organic frameworks and for the isolation of reduced
MOF materials.
(8) Li, J.-R.; Sculley, J.; Zhou, H.-C. Metal-Organic Frameworks for
Separations. Chem. Rev. 2012, 112, 869−932.
(9) Morris, R. E.; Wheatley, P. S. Gas Storage in Nanoporous
Materials. Angew. Chem., Int. Ed. 2008, 47, 4966−4981.
(10) Sun, Y.-F.; Liu, S.-B.; Meng, F.-L.; Liu, J.-Y.; Jin, Z.; Kong, L.-
T.; Liu, J.-H. Metal Oxide Nanostructures and Their Gas Sensing
Properties: A Review. Sensors 2012, 12, 2610−2631.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(11) Chen, B.; Xiang, S.; Qian, G. Metal-Organic Frameworks with
Functional Pores for Recognition of Small Molecules. Acc. Chem. Res.
2010, 43, 1115−1124.
(12) Bloch, E. D.; Murray, L. J.; Queen, W. L.; Chavan, S.;
Maximoff, S. N.; Bigi, J. P.; Krishna, R.; Peterson, V. K.; Grandjean,
F.; Long, G. J.; Smit, B.; Bordiga, S.; Brown, C. M.; Long, J. R.
Selective Binding of O2 over N2 in a Redox-Active Metal-Organic
Framework with Open Iron(II) Coordination Sites. J. Am. Chem. Soc.
2011, 133, 14814−14822.
(13) Bloch, E. D.; Queen, W. L.; Hudson, M. R.; Mason, J. A.; Xiao,
D. J.; Murray, L. J.; Flacau, R.; Brown, C. M.; Long, J. R. Hydrogen
Storage and Selective, Reversible O2 Adsorption in a Metal-Organic
Framework with Open Chromium(II) Sites. Angew. Chem., Int. Ed.
2016, 55, 8605−8609.
(14) Murray, L. J.; Dinca, M.; Yano, J.; Chavan, S.; Bordiga, S.;
Brown, C. M.; Long, J. R. Highly Selective and Reversible O2 Binding
in Cr3(1,3,5-benzenetricarboxylate)2. J. Am. Chem. Soc. 2010, 132,
7856−7857.
(15) Wade, C. R.; Dinca, M. Investigation of the synthesis,
activation, and isosteric heats of CO2 adsorption of the isostructural
series of metal−organic frameworks M3(BTC)2 (M = Cr, Fe, Ni, Cu,
Mo, Ru). Dalton Trans 2012, 41, 7931−7938.
(16) Tulchinsky, Y.; Hendon, C. H.; Lomachenko, K. A.; Borfecchia,
E.; Melot, B. C.; Hudson, M. R.; Tarver, J. D.; Korzynski, M. D.;
Stubbs, A. W.; Kagan, J. J.; Lamberti, C.; Brown, C. M.; Dinca, M.
Reversible Capture and Release of Cl2 and Br2 with a Redox-Active
Metal-Organic Framework. J. Am. Chem. Soc. 2017, 139, 5992−5997.
(17) Park, J.; Perry, Z.; Chen, Y.-P.; Bae, J.; Zhou, H.-C.
Chromium(II) Metal-Organic Polyhedra as Highly Porous Materials.
ACS Appl. Mater. Interfaces 2017, 9, 28064−86068.
Detailed experimental procedures; Spectroscopic and
AUTHOR INFORMATION
■
Corresponding Authors
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Benjamin Trump for help with powder X-ray
diffraction experiments. This work was supported by a
University of Delaware Research Foundation-Strategic Ini-
tiatives Grant to E.D.B. and J.R. E.D.B. also thanks the
University of Delaware for startup funds that made this work
possible. This research used resources of the Advanced Photon
Source, a U.S. Department of Energy (DOE) Office of Science
User Facility operated for the DOE Office of Science by
Argonne National Laboratory under Contract No. DE-AC02-
06CH11357. We thank the staff of 17-BM for help with
synchrotron X-ray data collection. A portion of this work was
supported by the National Institutes of Health under award
number P20GM104316. Faradaic efficiencies were determined
using instrumentation obtained through NSF CHE1352120.
(18) Dan-Hardi, M.; Serre, C.; Frot, T.; Rozes, L.; Maurin, G.;
Sanchez, C.; Ferey, G. A New Photoactive Crystalline Highly Porous
Titanium(IV) Dicarboxylate. J. Am. Chem. Soc. 2009, 131, 10857−
10859.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX