2
526 Crystal Growth & Design, Vol. 10, No. 6, 2010
Ma et al.
nanoplates, curved nanoplates and nanoplate arrays. Reac-
tion temperature was found to play a crucial role in determin-
ing the morphologies of BiOCl nanostructures. This iono-
thermal synthetic route using long-chain ionic liquid has
potential application in fabricating other polar nanomaterials
with novel morphologies and improved properties in aspects
of optics, electrochemistry, and catalysis. Moreover, the as-
synthesized BiOCl nanoplates would be promisingly applied
to adsorp heavy metal ions in the field of wastewater treat-
ment.
Thomas, A.; Antonietti, M. Adv. Mater. 2009, 21, 897–901. (k) Liu, L.;
Li, Y.; Wei, H. B.; Dong, M.; Wang, J. G.; Slawin, A. M. Z.; Li, J. P.;
Dong, J. X.; Morris, R. E. Angew. Chem., Int. Ed. 2009, 48, 2206–
2
209. (l) Recham, N.; Dupont, L.; Courty, M.; Djellab, K.; Larcher, D.;
Armand, M.; Tarascon, J. M. Chem. Mater. 2009, 21, 1096–1107. (m)
Lian, J. B.; Ma, J. M.; Duan, X. C.; Tom, K. I.; Li, H. B.; Zheng, W. J.
Chem. Commun. 2010, 2650–2652.
(
8) (a) Taubert, A. Angew. Chem., Int. Ed. 2004, 43, 5380-5382. (b)
Zhou, Y.; Antonietti, M. J. Am. Chem. Soc. 2003, 125, 14960–14961.
(
2
c) Zhu, Y. J.; Wang, W. W.; Qi, R. J.; Hu, X. L. Angew. Chem., Int. Ed.
004, 43, 1410–1414.
(9) (a) Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.;
Watanabe, M. J. Phys.Chem. B 2005, 109, 6603–6110. (b) Tokuda,
H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.; Watanabe, M. J. Phys.
Chem. B 2004, 108, 16493–16600.
(10) (a) Firestone, M. A.; Dzielawa, J. A.; Zapol, P.; Curtiss, L. A.;
Seifert, S.; Dietz, M. L. Langmuir 2002, 18, 7258–7260. (b) Bowlas,
C. J.; Bruce, D. W.; Seddon, K. R. Chem. Commun. 1996, 1625–1626.
Acknowledgment. This work was financially supported by
the National Natural Science Foundation of China (20571044
and 20971070).
(
c) Gordon, C. M.; Holbrey, J. D.; Kennedy, A. R.; Seddon, K. R.
Supporting Information Available: Additional figures (PDF).
This material is available free of charge via the Internet at http://
pubs.acs.org.
J. Mater. Chem. 1998, 8, 2627–2636. (d) Lee, K. M.; Lee, C. K.; Lin,
I. J. B. Chem. Commun. 1997, 899–900. (e) Holbrey, J. D.; Seddon,
K. R. J. Chem. Soc., Dalton Trans. 1999, 2133–2139.
(
11) (a) Inoue, T.; Dong, B.; Zheng, L. Q. J. Colloid Interface Sci. 2007,
3
07, 578–581. (b) Goodchild, I.; Collier, L.; Millar, S. L.; Prokes, I.;
References
Lord, J. C. D.; Butts, C. P.; Bowers, J.; Webster, J. R. P.; Heenan, R. K.
J. Colloid Interface Sci. 2007, 307, 455–468. (c) Kaper, H.; Smarsly,
B. Z. Z. Phys. Chem. 2006, 220, 1455–1471. (d) Zhang, J.; Dong, B.;
Zheng, L. Q.; Li, N.; Li, X. W. J. Colloid Interface Sci. 2008, 321, 159–
165.
(
1) (a) Welton, T. Chem. Rev. 1999, 99, 2071–2083. (b) Holbrey, J. D.;
Seddon, K. R. Clean Prod. Proc. 1999, 1, 223–236. (c) Wasserscheid,
P.; Keim, W. Angew. Chem., Int. Ed. 2000, 39, 3772–3789. (d) Zhao,
D. B.; Wu, M.; Kou, Y.; Min, E. Z. Catal. Today 2002, 74, 157–189. (e)
Buzzeo, M. C.; Evans, R. G.; Compton, R. G. ChemPhysChem 2004, 5,
106–1120.
2) (a) Mann, O.; Freyland, W.; Raz, O; Ein-Eli, Y. Chem. Phys. Lett.
008, 460, 178–181. (b) Zhuang, D. X.; Deng, M. J.; Chen, P. Y.; Sun,
(12) (a) Zhou, Y.; Antonietti, M. Adv. Mater. 2003, 15, 1452–1455. (b)
Zhou, Y.; Antonietti, M. Chem. Commun. 2003, 2564–2565. (c) Zhou,
Y.; Schattka, J. H.; Antonietti, M. Nano Lett. 2004, 4, 477–481. (d)
Zhou, Y.; Antonietti, M. Chem. Mater. 2004, 16, 544–550. (e)
Antonietti, M.; Kuang, D. B.; Smarsly, B.; Yong, Z. Angew. Chem.,
Int. Ed. 2004, 43, 4988–4992.
(13) (a) Adams, C. J.; Bradley, A. E.; Seddon, K. R. Aust. J. Chem. 2001,
54, 679–681. (b) Wang, T. W.; Kaper, H.; Antonietti, M.; Smarsly, B.
Langmuir 2007, 23, 1489–1495.
(14) (a) Wang, W. D.; Huang, F. Q.; Lin, X. P. Scrip. Mater. 2007, 56,
669–672. (b) Ghosh, R.; Maiti, S.; Chakraborty, A. Tetrahedron Lett.
2004, 45, 6775–6778. (c) Kijima, N.; Matano, K.; Saito, M.; Oikawa,
T.; Konishi, T.; Yasuda, H.; Sato, T.; Yoshimura, Y. Appl. Catal., A
2001, 206, 237–244. (d) Lin, X. P.; Shan, Z. C.; Li, K. Q.; Wang, W. D.;
Yang, J. H.; Huang, F. Q. Solid State Sci. 2007, 9, 944–949. (e) Wang,
C. H.; Shao, C. L.; Liu, Y. C.; Zhang, L. N. Scrip. Mater. 2008, 59,
332–335. (f ) Zhang, K. L.; Liu, C. M.; Huang, F. Q.; Zheng, C.; Wang,
W. D. Appl. Catal., B 2006, 68, 125–129.
(15) (a) Kusainova, A. M.; Lightfoot, P.; Zhou, W.; Stefanovich, S. Y.;
Mosunov, A. V.; Dolgikh, V. A. Chem. Mater. 2001, 13, 4731–
4737. (b) Charkin, D. O.; Berdonosov, P. S.; Moisejev, A. M.;
Shagiakhmetov, R. R.; Dolgikh, V. A.; Lightfoot, P. J. Solid State
Chem. 1999, 147, 527–535.
1
(
2
I. W. J. Electrochem. Soc. 2008, 155, D575–D579. (c) Bhatt, A. I.;
Bond, A. M. J. Electrochem. Soc. 2008, 619, 1–10. (d) Mallet, J.;
Molinari, M.; Martineau, F.; Delavoie, F.; Fricoteaux, P.; Troyon, M.
Nano Lett. 2008, 8, 3468–3474. (e) Xiao, F.; Zhao, F. Q.; Zhang, Y. F.;
Guo, G. P.; Zeng, B. Z. J. Phys. Chem. C 2009, 113, 849–855. (f )
Imanishi, A.; Tamura, M.; Kuwabata., S Chem. Commun. 2009, 1775–
1
777. (g) Endres, F. Phys. Chem. Chem. Phys. 2001, 3, 3165–3174. (h)
Endres, F.; El Abedin, S. Z. Chem. Commun. 2002, 892–893. (i)
Mukhopadhyay, I.; Freyland, W. Langmuir 2003, 19, 1951–1953. ( j)
Bomparola, R.; Caporali, S.; Lavacchi, A.; Bardi, U. Surf. Coat.
Technol. 2007, 201, 9485–9490. (k) Bando, Y.; Katayama, Y.; Miura,
T. Electrochim. Acta 2007, 53, 87–91.
(
3) (a) Zhu, J. M.; Shen, Y. H.; Xie, A. J.; Qiu, L. G.; Zhang, Q.;
Zhang, S. Y. J. Phys. Chem. C 2007, 111, 7629–7633. (b) Zhao, C.;
Bond, A. M. J. Am. Chem. Soc. 2009, 131, 4279–4287.
(
4) Imanishi, A.; Tamura, M.; Kuwabata, S. Chem. Commun. 2009,
1775–1777.
(
5) (a) Wang, H. F.; Zhu, Y. Z.; Yan, X. P.; Gao, R. Y.; Zheng, J. Y.
Adv. Mater. 2008, 29, 952–959. (b) Choi, H.; Kim, Y. J.; Varma, R. S.;
Dionysiou, D. D. Chem. Mater. 2006, 18, 5377–5384. (c) Farag, H.;
Al Zoubi, M.; Endres, F. J. Mater. Sci. 2009, 44, 122–128. (d) Zhou,
Y.; Antonietti, M. J. Am. Chem. Soc. 2003, 125, 14960–14961. (e)
Kaper, H.; Endres, F.; Djerdj, I.; Antonietti, M.; Smarsly, B. M.; Maier,
J.; Hu, Y. S. Small 2007, 3, 1753–1763.
(16) (a) Zhou, S. X.; Ke, Y. X.; Li, J. M.; Lu, S. M. Mater. Lett. 2003, 57,
2053–2055. (b) Geng, J.; Hou, W. H.; Lv, Y. N.; Zhu, J. J.; Chen, H. Y.
Inorg. Chem. 2005, 44, 8503–8509.
(17) Deng, Z. T.; Tang, F. Q.; Muscat, A. J. Nanotechnology 2008, 19,
295705–295710.
(
6) (a) Li, Z. H.; Zhang, J. L.; Du, J. M.; Gao, H. X.; Gao, Y. N.; Mu,
T. C.; Han, B. X. Mater. Lett. 2005, 59, 963–965. (b) Liu, X. D.; Ma,
J. M.; Peng, P.; Zheng, W. J. Mater. Sci. Eng., B 2008, 150, 89–94. (c)
Dong, W. S.; Lin, F. Q.; Liu, C. L.; Li, M. Y. J. Colloid Interface Sci.
(18) (a) Deng, Z. T.; Chen, D.; Peng, B.; Tang, F. Q. Cryst. Growth Des.
2008, 8, 2995–3003. (b) Chen, X. Y.; Zhang, Z. J.; Lee, S. W. J. Solid
State Chem. 2008, 181, 166–174. (c) Zhang, X.; Ai, Z. H.; Jia, F. L.;
Zhang, L. Z. J. Phys. Chem. C 2008, 112, 747–753. (d) Chen, X. Y.;
Huh, H. S.; Lee, S. W. J. Solid State Chem. 2007, 180, 2510–2516.
(19) Peng, H. L.; Chan, C. K.; Meister, S.; Zhang, X. F.; Cui, Y. Chem.
Mater. 2009, 21, 247–252.
2009, 333, 734–740. (c) Lian, J. B.; Duan, X. C.; Ma, J. M.; Kim., T. I.;
Zheng, W. J. ACS Nano 2009, 3, 3749–3761.
(
7) (a) Cooper, E. R.; Andrews, C. D.; Wheatley, P. S.; Webb, P. B.;
Wormald, P.; Morris, R. E. Nature 2004, 430, 1012–1016. (b) Lian,
J. B.; Kim, T. I.; Liu, X. D.; Ma, J. M.; Zheng, W. J. J. Phys. Chem. C
(20) Henle, J.; Simon, P.; Frenzel, A.; Scholz, S.; Kaskel, S. Chem.
Mater. 2007, 19, 366–373.
2
009, 113, 9135–9140. (c) Lin, Z. J.; Wragg, D. S.; Morris, R. E. Chem.
(21) Geng, J.; Hou, W. H.; Lv, Y. N.; Zhu, J. J.; Chen, H. Y. Inorg.
Chem. 2005, 44, 8503–8509.
(22) Seddon, K. R.; Stark, A.; Torres, M. J. Pure Appl. Chem. 2000, 72,
2275–2287.
(23) (a) Taubert, A. Angew. Chem., Int. Ed. 2004, 43, 5380–5382. (b) Lin,
Z.; Wragg, D. S.; Morris, R. E. Chem. Commun. 2006, 2021–2023. (c)
Nakashima, T.; Kimizuka, N. J. Am. Chem. Soc. 2003, 125, 6386–
6387. (d) Liu, Y.; Li, J.; Wang, M. J.; Li, Z. Y.; Liu, H. T.; He, P.; Yang,
X. R.; Li, J. H. Cryst. Growth Des. 2005, 5, 1643–1649. (e) Kaper, H.;
Endres, F.; Djerdj, I.; Antonietti, M.; Smarsly, B. M.; Maier, J.; Hu, Y. S.
Small 2007, 10, 1753–1763. (f ) Zhu, J. M.; Shen, Y. H.; Xie, A. J.; Qiu,
L. G.; Zhang, Q.; Zhang, S. Y. J. Phys. Chem. C 2007, 111, 7629–7633.
Commun. 2006, 2021–2023. (d) Xu, Y. P.; Tian, Z. J.; Wang, S. J.; Hu,
Y.; Wang, L.; Wang, B. C.; Ma, Y. C.; Hou, L.; Yu, J. Y.; Lin, L. W.
Angew. Chem., Int. Ed. 2006, 45, 3965–3970. (e) Parnham, E. R.;
Drylie, E. A.; Wheatley, P. S.; Slawin, A. M. Z.; Morris, R. E. Angew.
Chem., Int. Ed. 2006, 45, 4962–4966. (f ) Zhu, H. G.; Huang, J. F.; Pan,
Z. W.; Dai, S. Chem. Mater. 2006, 18, 4473–4477. (g) Parnham, E. R.;
Morris, R. E. Acc. Chem. Res. 2007, 40, 1005–1013. (h) Cai, R.; Sun,
M. W.; Chen, Z. W.; Munoz, R.; O'Neill, C.; Beving, D. E.; Yan, Y. S.
Angew. Chem., Int. Ed. 2008, 47, 525–528. (i) Wang, L.; Xu, Y. P.;
Wang, B. C.; Wang, S. J.; Yu, J. Y.; Tian, Z. J.; Lin, L. W. Chem.;Eur.
J. 2008, 14, 10551–10555. ( j) Kuhn, P.; Forget, A.; Hartmann, J.;