(
R = 0.97) between the Eox,1 Ϫ Ered,1 (V) and λmax values (in eV)
2 Previously reported CEEs: (a) H. Hopf and M. Kreutzer,
Angew. Chem., 1990, 102, 425–426 (Angew. Chem. Int. Ed., 1990,
of 1–6, indicating that both quantities represent the same
physical effect.
In order to obtain a first impression of the two-photon
absorption (TPA) properties of the new chromophores, the
TPA cross-section of CEE 4 was measured. A value of 8.8 ×
2
9, 393–395); (b) L. Yu. Ukhin, A. M. Sladkov and Zh. I.
Orlova, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1969, 637–638;
c) L. Dulog, B. Körner, J. Heinze and J. Yang, Liebigs Ann., 1995,
663–1671.
(
1
3 (a) M. Albota, D. Beljonne, J. -L. Brédas, J. E. Ehrlich, J.-Y. Fu,
A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder,
D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subra-
maniam, W. W. Webb, X.-L. Wu and C. Xu, Science, 1998, 281,
Ϫ49
4
Ϫ1
1
0
cm s photon at 900 nm in 1,1,2,2-tetrachloroethane
was found, which is about three times higher than the value for
the AF-50 standard (3.0 × 10 cm s photon at 796 nm in
Ϫ49
4
Ϫ1
1
653–1656; (b) M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry,
10
benzene, see ESI†), indicating the enormous potential of the
small CEE molecules for opto-electronic applications. In this
context of potential technological applications, it should be
noted that the new chromophores 5 and 6 can be sublimed
without decomposition under laboratory conditions (100–160
ЊC, 0.1 Torr), which is not possible with the corresponding
TEEs and could pave the way for the preparation of ultra-thin
films by vapor deposition.
S. Barlow, Z.-Y. Hu, D. McCord-Maughon, T. C. Parker, H. Röckel,
S. Thayumanavan, S. R. Marder, D. Beljonne and J.-L. Brédas,
J. Am. Chem. Soc., 2000, 122, 9500–9510; (c) B. A. Reinhardt,
L. L. Brott, S. J. Clarson, A. G. Dillard, J. C. Bhatt, R. Kannan,
L. Yuan, G. S. He and P. N. Prasad, Chem. Mater., 1998, 10, 1863–
1
874.
4
5
U. Gubler and C. Bosshard, Adv. Polym. Sci., 2002, 158, 123–191.
R. Spreiter, C. Bosshard, G. Knöpfle, P. Günter, R. R. Tykwinski,
M. Schreiber and F. Diederich, J. Phys. Chem. B, 1998, 102,
2
9–32.
6
(a) R. R. Tykwinski, U. Gubler, R. E. Martin, F. Diederich,
C. Bosshard and P. Günter, J. Phys. Chem. B, 1998, 102, 4451–4465;
Acknowledgements
(
b) M. B. Nielsen, M. Schreiber, Y. G. Baek, P. Seiler, S. Lecomte,
Support by the ETH Research Council, the ERASMUS
exchange program (R. G.) and the German Fonds der
Chemischen Industrie is gratefully acknowledged.
C. Boudon, R. R. Tykwinski, J.-P. Gisselbrecht, V. Gramlich,
P. J. Skinner, C. Bosshard, P. Günter, M. Gross and F. Diederich,
Chem. Eur. J., 2001, 7, 3263–3280.
7
8
(a) A. Hilger, J.-P. Gisselbrecht, R. R. Tykwinski, C. Boudon,
M. Schreiber, R. E. Martin, H. P. Lüthi, M. Gross and F. Diederich,
J. Am. Chem. Soc., 1997, 119, 2069–2078; (b) C. Dehu, F. Meyers
and J.-L Brédas, J. Am. Chem. Soc., 1993, 115, 6198–6206.
(a) R. R. Tykwinski, M. Schreiber, R. P. Carlon, F. Diederich and
V. Gramlich, Helv. Chim. Acta, 1996, 79, 2249–2281; (b) R. R.
Tykwinski, M. Schreiber, V. Gramlich, P. Seiler and F. Diederich,
Adv. Mater., 1996, 8, 226–231.
Notes and references
1
13
‡
All new compounds were characterised by IR, UV/Vis, H and
NMR, elemental analysis or HR-MS. Crystal data of 5 at 120 K:
C H N , [M = 364.44]: monoclinic, space group P2 /n (no. 14),
C
2
4
20
4
r
1
Ϫ3
D = 1.237 g cm , Z = 2, a = 3.9477(2), b = 11.1064(4), c = 22.3725(9) Å,
β = 93.769(2)Њ, V = 978.79(7) Å . Bruker-Nonius Kappa-CCD, MoK
c
3
α
9 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery,
Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam,
A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi,
V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli,
C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala,
Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavach-
ari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu,
A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin,
D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,
M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon,
E. S. Replogle and J. A. Pople, Gaussian 98, Revision A.7, Gaussian,
Inc., Pittsburgh PA, 1998 .
2
radiation, λ = 0.7107 Å. Final R(F) = 0.053, wR(F ) = 0.108 for 128
parameters and 2232 reflections with I > 2σ(I ) and 2.05 < θ < 27.52Њ
(
0
corresponding R-values based on all 4186 reflections are 0.108 and
.158, respectively). Crystal data of 6 at 243 K (C H N , M = 246.27):
1
5
10
4
r
Ϫ3
¯
triclinic, space group P1, D = 1.220 g cm , Z = 2, a = 7.014(1),
c
b = 7.085(1), c = 14.149(2) Å, α = 77.79 (2)Њ, β = 89.21(1)Њ, γ = 77.40(2)Њ,
3
V = 670.28(16) Å . Nonius CAD4 diffractometer, CuK radiation,
α
2
λ = 1.5418 Å. Final R(F) = 0.058, wR(F ) = 0.172 for 183 parameters
and 2631 reflections with I > 2σ(I ) and 3.20 < θ < 74.87Њ (corre-
sponding R-values based on all 2922 reflections are 0.064 and 0.179,
respectively). CCDC reference numbers 207516 and 207517. See http://
www.rsc.org/suppdata/ob/b3/b303879c/ for crystallographic data in .cif
or other electronic format.
1
0 The values vary depending on the monitoring wavelength and the
solvent used, see: O.-K. Kim, K.-S. Lee, H. Y. Woo, K.-S. Kim,
G. S. He, J. Swiatkiewicz and P. N. Prasad, Chem. Mater., 2000, 12,
284–286.
1
N. N. P. Moonen, C. Boudon, J.-P. Gisselbrecht, P. Seiler,
M. Gross and F. Diederich, Angew. Chem., 2002, 114, 3170–3173
(
Angew. Chem., Int. Ed., 2002, 41, 3044–3047).
2
034
O r g . B i o m o l . C h e m . , 2 0 0 3 , 1, 2 0 3 2 – 2 0 3 4