9
0
J ournal of Natural Products, 2004, Vol. 67, No. 1
Notes
derivative (7). Its H NMR spectrum was identical to that of
1
to afford compound 3 (44.0 mg). Fraction F -4 was crystallized
from a MeOH-EtOAc mixture to give compound 2 (8.5 mg),
and the mother liquid was subjected to reversed-phase HPLC
5
3
the natural product (1), CD (CHCl
3
) [θ]298.6 -12.5 × 10 , [θ]264.3
3
+23.5 × 10
(
Prodigy ODS-3, 5 µm, 21.2 × 250 mm column, 70:30 (v/v)
Ma r m esin (2): white crystals, [R] 25 +9.63° (c 0.166,
D
-
1
1
13
MeOH-H
2
O, 14 mL min , photodiode-array detection moni-
CHCl ); IR, UV, HREIMS, and H and C NMR data identical
3
tored at 220 nm) separation to afford compound 1 (5.9 mg).
L-Norepinephrine and cinnamoyl chloride were purchased
from Acros Organics, NJ . Diazald, 99% (N-methyl-N-nitroso-
p-toluenesulfonamide) was purchased from Aldrich Chemical
Co. Inc.
to literature value.16
Deca r in e (3): yellow crystals; UV, HREIMS, 1H, 13C NMR
17-19
data identical to reference values.
Ack n ow led gm en t. The authors acknowledge the United
States Department of Agriculture, Agriculture Research Ser-
vice Specific Cooperative Agreement No. 58-6408-2-0009, for
partial support of this work. The authors are also grateful to
Dr. D. G. Nagle and Dr. C. F. Hossain (Department of
Pharmacognosy, School of Pharmacy, University of Missis-
sippi) for allowing the use of the HPLC facility and Dr. D. C.
Dunbar (NCNPR, University of Mississippi) for the HRESIMS
analysis.
Cytotoxicity Assa y. In Vitr o Cytotoxic Activity. The
level of toxicity of each sample was determined by measuring
the effect on a fibroblast cell line from African green monkey
kidney (VERO, nontransformed). For initial (primary) evalu-
ation, extracts and fractions were screened at a single con-
centration (100 µg/mL). Follow-up secondary assays were
conducted at three concentrations (4.76, 1.58, and 0.52 µg/mL),
using a culture-treated 96-well microplate 16. For secondary
assay, IC50 values were determined from logarithmic graphs
of growth inhibition values. The cytotoxic agents doxorubicin
and 5-fluorouracil were used as positive controls, while DMSO
was used as the negative (vehicle) control.
An tim icr obia l Assa y. Preliminary antimicrobial activities
of the crude exctracts/fractions and the IC50/MIC values of
compounds were determined using a modified 96-well micro-
plate assay protocol. The test organisms used were ATCC
strain of Candida albicans B311 (#90028), Cryptococcus neo-
formans (#90113), Stephylococcus aureus (#6535), and S.
aureus (# 33591). Amphotericin B and rifampin were used as
positive controls, with DMSO as a negative control.
Refer en ces a n d Notes
(
(
(
1) Talapatra, S. K.; Dutta, S.; Talapatra, B. B. Phytochemistry 1973,
12, 729-730.
2) Ko, F. N.; Hsiao, G.; Chen, I. S.; Wu, S. J .; Teng, C. M. Biochem.
Pharmacol. 1993, 46, 1165-1173.
3) The Wealth of India: Raw Materials; PID, Council of Scientific and
Industrial Research (CSIR): New Delhi, 1976; Vol. II, pp 18-19.
2
4
(4) Stone, B. C. In Dassanayake, M. D., Fosberg, R., Eds. A Revised
Handbook to the Flora of Ceylon; Oxford and 1BH Publishing: New
Delhi, 1985; Vol. 5, p 406.
(
5) J ayaweera, D. M. A. In Medicinal Plants Used in Sri Lanka. National
Science Council: Sri Lanka, 1982; Part 5, p 39.
2
5
Syn ca r p a m id e (1): light brown solid, [R]
CHCl ); IR (film) νmax 3472, 2961, 2923, 1713, 1604, 1449, 1268,
3
57 cm ; UV λmax (MeOH) 242, 250, 278 nm; CD (CHCl )
D
+12.50° (c 0.08,
(6) Weenen, H.; Nkunya, M. H. H.; Bray, D. H.; Mwasumbi, L. B.; Kinabo,
L. S.; Kilimali, V. A.; Wijnberg, J . B. Planta Med. 1990, 56, 371-
3
3
73.
-
1
7
(
7) Kalia, N. K.; Sing, B.; Sood, R. P. J . Nat. Prod. 1999, 62, 311-312.
(8) Reyes, B.; Navarrete, A.; Sixtos, C.; Aguirre, E.; J imenez, S.; Estrada,
3
3 1
[
θ]295.4 +10.5 × 10 , [θ]263.9 -12.9 × 10 ; H NMR (CDCl
3
, 400
MHz) δ 3.87 (3H, s), 3.88 (2H, overlapped, H-8), 3.90 (3H, s),
E. Rev. Mex. Cienc. Farm. 1991, 21, 30-34.
9) De Morais, S. M.; Facundo, V. A.; Braz Filho, R. J . Essent. Oil Res.
(
6
1
)
7
.00 (1H, t, J ) 6.4 Hz, H-7), 6.08 (1H, br s), 6.38 (1H, d, J )
5.5 Hz, H-8′′), 6.50 (1H, d, J ) 16.0 Hz, H-8′), 6.86 (1H, d, J
2
002, 14, 274-275.
(
(
(
10) Facundo, V. A.; De Morais, S. M.; Braz Filho, R.; Matos, I. J . de A;
8.0 Hz, H-5), 6.96 (1H, s, H-2), 7.00 (1H, d, J ) 8.0 Hz, H-6),
Souza, R. T. Rev. Bras. Farm. 1997, 78, 57-59.
11) Facundo, V. A.; De Morais, S. M.; Machado, M. I. L.; Matos, F. J . de
A.; Da Frota, L. C. M. J . Essent. Oil. Res. 1999, 11, 426-428.
12) Dadson, B. A.; Minta, A. J . Chem. Soc., Perkin Trans. 1 1976, 2, 146-
.35 (1H, m, H-3′), 7.35 (1H, m, H-4′), 7.35 (1H, m, H-5′), 7.35
(
(
1H, m, H-3′′), 7.35 (1H, m, H-4′′), 7.35 (1H, m, H-5′′), 7.49
1H, m, H-2′′), 7.49 (1H, m, H-6′′), 7.49 (1H, m, H-2′), 7.49 (1H,
1
47.
m, H-6′), 7.63 (1H, d, J ) 15.5 Hz, H-7′′), 7.72 (1H, d, J ) 16.0
(13) Swinehart, J . A.; Stermitz, F. R. Phytochemistry 1980, 19, 1219-
1
3
1223.
Hz, H-7′); C NMR (CDCl
OCH -4), 56.0 (q, OCH -3), 74.7 (d, C-7), 109.8 (d, C-2), 111.2
d, C-5), 117.6 (d, C-8′), 119.1 (d, C-6), 120.3 (d, C-8′′), 127.9
3
, 100 MHz) δ 44.7 (t, C-8), 55.9 (q,
(
14) Chatterjee, A.; Bose, S.; Srimany, S. K. J . Org. Chem. 1959, 24, 687-
3
3
6
90.
(
(
(
(
(
(
(
(15) Warren, S. Can. J . Chem. 1971, 49, 2297-2301.
(16) Elgamal, M. H. A.; Elewa, N. H.; Elkhrisy, E. A. M.; Duddeck, H.
Phytochemistry 1979, 18, 139-143.
d, C-2′′), 127.9 (d, C-6′′), 128.2 (d, C-2′), 128.2 (d, C-6′), 128.8
d, C-3′), 128.8 (d, C-5′), 128.9 (d, C-3′′), 128.9 (d, C-5′′), 129.8
s, C-1), 130.3 (d, C-4′), 130.6 (d, C-4′′), 134.2 (s, C-1′), 134.7
s, C-1′′), 141.6 (d, C-7′′), 145.8 (d, C-7′), 149.2 (s, C-4), 149.2
(
17) Krane, B. D.; Fagbule, M. O.; Shamma, M. J . Nat. Prod. 1984, 47,
1
-43.
(18) Vaquette, J .; Pousset, J .-L.; Paris, R.-R.; Cave, A. Phytochemistry
1974, 13, 1257-1259.
s, C-3), 166.0 (s, C-9′′), 166.5 (s, C-9′); HRESIMS m/z 480.1821
+
(19) Waterman, P. G. Phytochemistry 1975, 14, 843-844.
calcd for C28
H
27NO
5
Na, [M + Na] , 480.1787).
(
20) Nissanka, A. P. K.; Karunaratne, V.; Bandara, B. M. R.; Kumar, V.;
Nakanishi, T.; Nishi, M.; Inada, A.; Tillekeratn, L. M. V.; Wije-
sundara, D. S. A.; Gunatilaka, A. A. L. Phytochemistry 2001, 56, 857-
Syn th esis of (-)-R-Nor ep in ep h r in e Der iva tive (7).
Diazomethane was added to a solution of l-norepinephrine 5
100 mg) in MeOH (200 mL), and the mixture was cooled to
8
61.
(
(
21) Dou, J .; McChesney, J . D.; Sindelar, R. D.; Goins, D. K.; Walker, L.
A. J . Nat. Prod. 1996, 59, 73-76.
-
15 °C. The mixture was kept 72 h at -15 °C. A second batch
of diazomethane was added, and the mixture was kept for a
(
22) Makler, M. T.; Ries, J . M.; Williams, J . A.; Bancroft, J . E.; Piper, R.
C.; Gibbins, B. L.; Hinriches, D. J . Am. J . Trop. Med. Hyg. 1993, 48,
further 72 h at -15 °C. The solvent was evaporated with a
strong stream of N .
2
The crude methylated product (6) was dried and dissolved
in pyridine (2 mL). Cinnamoyl chloride (207 mg, 2.1 equiv)
was added, and the reaction mixture was gently heated (40 to
7
39-741.
23) Makler, M. T.; Hinriches, D. J . Am. J . Trop. Med. Hyg. 1993, 48, 205-
10.
(
2
(24) National Committee for Clinical Laboratory Standards. Methods for
Dilution. Antimicrobial Susceptibility Test for Bacteria that Grow
Aerobically. Approved Standard M7-A, 4th ed.; National Committee
for Clinical Laboratory Standards: Wayne, PA, 1997.
4
5 °C) for 16 h. The excess pyridine was removed by a strong
stream of N . The mixture was separated by preparative TLC
using CHCl -MeOH, 99:1, to give the (-)-R-norepinephrine
2
3
NP030417T