IR-SPECTROSCOPIC STUDY
195
Ermakov, AE., Rusinov, G.L., and Charushin, V.N.,
group of tetrazole cycle, which is accompanied its pas-
sivation, whereas on the SiO2–TiO2 surface it is coor-
dinated by the NH2 group; thus, the NH group of ami-
noazole remains free and can participate in the reac-
tion. The 3-aminotriazole molecules settle in a flat
manner on the surface of Al2O3 and SiO2–TiO2 nano-
oxides and are bound with each other by IMHB,
which constrains the participation of the NH group of
the tetrazole cycle in the reaction. This explains the
lack of catalytic activity of Al2O3 and SiO2–TiO2
nanooxides in the Biginelli reaction with the partici-
pation of 3-aminotriazole.
The results of the present study of the IR spectra of
sorbed aminoazoles IVа and IVb allow us to recom-
mend nanosized SiO2–TiO2 (3 : 1) as a promising cat-
alyst for the Biginelli reaction with the participation of
5-aminotetrazole at room temperature.
Kinet. Catal., 2011, vol. 52, no. 2, p. 226.
18. Fedorova, O.V., Koryakova, O.V., Valova, M.S.,
Ovchinnikova, I.G., Titova, Yu.A., Rusinov, G.L., and
Charushin, V.N., Kinet. Catal., 2010, vol. 51, no. 4,
p. 566.
19. Yao, Ch., Lei, S., Wang, C., Yu, Ch., and Tu, Sh., J.
Heterocycl. Chem., 2008, vol. 45, p. 1609.
20. Chen, Q., Jiang, L., Chen, Ch., and Yang, G., J. Het-
erocycl. Chem., 2009, vol. 46, p. 139.
21. Ghorbani-Vaghei, R., Toghraei-Semiromi, Z., Amiri, M.,
and Karimi-Nami, R., Mol. Diversity, 2013, vol. 17,
p. 307.
22. Kumari, K., Raghuvanshi, D.S., and Singh, K.N., Org.
Prep. Proced. Int., 2012, vol. 44, p. 460.
23. Heravi, M.M., Asadi, S., and Lashkariani, B.M., Mol.
Diversity, 2013, vol. 17, p. 389.
24. Krivtsov, I.V., Titova, Yu.A., Ilkaeva, M.V., Avdin, V.V.,
Fedorova, O.V., Khainakov, S.A., Garcia, J.R., Rusi-
nov, G.L., and Charushin, V.N., J. Sol-Gel Sci. Tech-
nol., 2014, vol. 69, p. 448.
ACKNOWLEDGMENTS
This work was supported by the Presidium of the
Ural Branch of the Russian Academy of Sciences
(project 15-21-3-6) and RFBR (grant no. 16-29-
10757-ofi_m).
25. Fedorova, O.V., Titova, Yu.A., Vigorov, A.Yu., Topo-
rova, M.S., Alisienok, O.A., Murashkevich, A.N.,
Krasnov, V.P., Rusinov, G.L., and Charushin, V.N.,
Catal. Lett., 2016, vol. 146, p. 493.
26. Murashkevich, A.N., Lavitskaya, A.S., Alisienok, O.A.,
and Zharskii, I.M., Inorg. Mater., 2009, vol. 45, p. 1146.
REFERENCES
27. Alvim, H.G.O., Lima, T.B., De Oliveira, A.L., De
Oliveira, H.C.B., Silva, F.M., Gozzo, F.C., Souza, R.Y.,
Da Silva, W.A., and Neto, B.A.D., Org. Chem., 2014,
vol. 79, p. 3383.
28. Zhidovinova, M.S., Ovchinnikova, I. G., Matochkina, E.G.,
Kodess, M.I., Van der Eycken, E., Van Meervelt, L.,
Fedorova, O.V., and Rusinov, G.L., Vestn. UGTU-UPI,
Ser. Khim., 2005, vol. 5, no. 57, p. 164.
1. Fierro, J.L.G., Metal Oxides, Chemistry and Applica-
tions, Boca Raton: CRC Press, 2006.
2. Titova, Yu.A., Fedorova, O.V., Rusinov, G.L., and
Charushin, V.N., Russ. Chem. Rev., 2015, vol. 84,
no. 12, p. 1294.
3. Suresh, S.J.S., Arkivoc, 2012, vol. 1, p. 66.
4. Fedorova, O.V., Zhidovinova, M.S., Rusinov, G.L.,
and Ovchinnikova, I.G., Russ. Chem. Bull., 2003,
vol. 52, no. 8, p. 1768.
29. Valova, M.S., Koryakova, O.V., Maximovskikh, A.I.,
Fedorova, O.V., Murashkevich, A.N., and Alisienok, O.A.,
J. Appl. Spectrosc., 2014, vol. 81, p. 422.
5. Yasuda, T., Iwamoto, T., Ohara, M., and Sato, S., Jpn.
30. Zundel, G., Hidration and Intermolecular Interaction,
J. Pharmacol., 1999, vol. 79, p. 65.
New York: Academic, 1969, p. 406.
6. Yang, G.F., Lu, R.F., Fei, X.N., and Yang, H.Z., Chin.
J. Chem., 2000, vol. 18, p. 435.
31. Thomas, S., Biswas, N., Venkateswaran, S., Kapoor, S.,
Naumov, S., and Mukherjee, T.J., Phys. Chem. A,
2005, vol. 109, p. 9928.
7. RF Patent 2360905, 2009.
8. Atwal, K.S., Swanson, B.N., Unger, S.E., Floyd, D.M.,
Moreland, S., Hedberg, A., and O’Reilly, B.C., J. Med.
Chem., 1991, vol. 34, p. 806.
32. Bhaskar, V.H. and Mohite, P.B., J. Optoelectronics and
Biomedical Materials, 2011, vol. 3, p. 7.
33. Barmin, M.I. and Mel’nikov, V.V., Novye amino-1,2,4-
triazolil i tetrazolil alkany (New amino-1,2,4-triazolyl
and tetrazolyl alkanes), St. Petersburg: SPGUTD,
2002, p. 18.
9. Triggle, D.J., Cell. Mol. Neurobiol., 2003, vol. 23, p. 3.
10. Kappe, C.O., Eur. J. Med. Chem., 2000, vol. 35,
p. 1043.
11. Rovnyak, G.C., Kimball, S.D., Beyer, B., and Cuci-
notta, G., J. Med. Chem., 1995, vol. 38, p. 119.
12. Blaser, H.U., Chem. Commun., 2003, p. 293.
13. Gong, L.Z., Chen, X.H., and Xu, X.Y., Chem. –Eur. J.,
2007, vol. 13, p. 8920.
34. Bigotto, A. and Castellani, G.J., J. Raman Spectrosc.,
1984, vol. 15, no. 4, p. 232.
35. Nakamoto K, Infrared Spectra of Inorganic and Coordi-
nation Compound, New York: Wiley, 1963, p. 403.
36. Morillo, E., Perez-Rodriguez, J.L., and Maqueda, C.,
14. Jain, S.L., Prasad, V.V., and Sain, B., Catal. Commun.,
Clay Miner., 1991, vol. 26, p. 269.
2008, vol. 9, p. 499.
15. Jing, X., Li, Zh., Pan, X., Wang, Q., Yan, Ch., and
Zhu, H., Synth. Commun., 2009, vol. 39, p. 3796.
16. Siddaramanna, M.R.M., Siddappa, A., Thimmanna, A.B.,
and Pasha, Ch.G., Chin. J. Chem., 2011, vol. 29,
p. 1863.
37. Russel, J.D. and Cruz-Cumplido, M., Agric. Food
Chem., 1968, vol. 16, p. 21.
38. Bellamy, L.J., Infrared Spectra of Complex Molecules,
New York: Wiley, 1958, p. 280.
17. Fedorova, O.V., Valova, M.S., Titova, Yu.A., Ovchin-
Translated by V. Alekseev
nikova, I.G., Grishakov, A.N., Uimin, M.A., Mysik, A.A.,
KINETICS AND CATALYSIS Vol. 59 No. 2 2018