Organic Letters
Letter
Table 1. Kinetic Parameters of MfnG-Catalyzed Reactions
ASSOCIATED CONTENT
Supporting Information
■
kcat (min−1
k /K (μM−1 min−1
*
S
substrate
Km (μM)
)
)
cat
m
2.87 ± 10−1
Detailed experimental procedures, NMR data and spectra for
L-Tyr
D-Tyr
78.74 ± 7.790
173.8 ± 13.90
22.73 ± 0.5665
22.07 ± 0.8226
1.27 ± 10−1
the ΔmfnN mutant failed to produce MFNs C (3) and D (4) but
generated MFNs A (1) and B (2) as the predominant products
AUTHOR INFORMATION
■
*
(Figure 2, trace ix). The structures of 1 and 2 produced by the
Author Contributions
ΔmfnN mutant were found to be identical to MFNs A and B
isolated from the wild-type strain upon large scale (8-L)
1
13
†
fermentation, purification, and HRMS, H NMR, and
C
J.L. and B.W. contributed equally.
NMR data comparisons. These data clearly reveal that MfnN is a
cytochrome P450 monooxygenase responsible for the regio- and
stereospecific hydroxylation of the MFN piperazic acid moiety.
MFNs A−F (1−6) belong to a very small class of N-terminally
formylated nonribosomal peptide natural products. Members of
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported by NSFC (41306146, 31290233,
81425022), and MOST (2012AA092104).
■
18
this family include the linear gramicidins, cyclic anabaenopep-
2
0
21
tilides, and the siderophores rhodochelin and coelichelin. In
the rhodochelin biosynthetic pathway, installation of the N-
formyl group is carried out by the formyltransferase Rft using N -
10
REFERENCES
■
(
1) Andavan, G. S.; Lemmens-Gruber, R. Mar. Drugs. 2010, 8, 810−
fH F and the small molecule δ-N-hydroxyornithine as sub-
4
2
1
834.
strates. In considering the MFN machinery, the noncanonical
initiation module with a C-A-PCP arrangement, the critical role
of the methionyl-tRNA formyltransferase MfnA and the captured
NRPS off-line N-formylated biosynthetic intermediate 7 strongly
suggests a different paradigm for N-terminus formylation of
NRPS natural products. Specifically, the mfn cluster indicates the
possibility that formylation may be accomplished via con-
(
2) Lemmens-Gruber, R.; Kamyar, M. R.; Dornetshuber, R. Curr. Med.
Chem. 2009, 16, 1122−1137.
3) Sarabia, F.; Chammaa, S.; Ruiz, A. S.; Ortiz, L. M.; Herrera, F. J.
Curr. Med. Chem. 2004, 11, 1309−1332.
4) Ballard, C. E.; Yu, H.; Wang, B. Curr. Med. Chem. 2002, 9, 471−498.
(5) Schmitz, F. J.; Yasumoto, T. J. Nat. Prod. 1991, 54, 1469−1490.
(6) Xu, Y.; Kersten, R. D.; Nam, S. J.; Lu, L.; Al-Suwailem, A. M.; Zheng,
H.; Fenical, W.; Dorrestin, P. C.; Moore, B. S.; Qian, P. Y. J. Am. Chem.
Soc. 2012, 134, 8625−8632.
7) Hamann, M. T.; Scheuer, P. J. J. Am. Chem. Soc. 1993, 115, 5825−
5826.
8) Ashour, M.; Edrada, R.; Ebel, R.; Wray, V.; Wat
Padmakumar, K.; Muller, W. E.; Lin, W. H.; Proksh, P. J. Nat. Prod.
006, 69, 1547−1553.
9) Mayer, A. M.; Glaser, K. B.; Cuevas, C.; Jacobs, R. S.; Kem, W.;
Little, R. D.; McIntosh, J. M.; Newman, D. J.; Potts, B. C.; Shuster, D. E.
Trends Pharmacol. Sci. 2010, 31, 255−265.
(10) Newman, D. J.; Cragg, G. M. Mar. Drugs 2014, 12, 255−278.
(11) Zhou, X.; Huang, H.; Li, J.; Song, Y.; Jiang, R.; Liu, J.; Zhang, S.;
Hua, Y.; Ju, J. Tetrehedron 2014, 70, 7795−7801.
12) Watanabe, M.; Kamigiri, K.; Tanaka, K.; Takeda, Y.; Yokoi, T.;
Shibazaki, K.; Suzumura, K.; Hashimoto, M.; Nishiwaki, S.; Takase, S.;
Abe, F. PCT Patent WO 2006073151, 2006.
13) Gust, B.; Challis, G. L.; Fowler, K.; Kieser, T.; Chater, K. F. Proc.
Natl. Acad. Sci. U.S.A. 2003, 100, 1541−1546.
14) Zhang, Y.; Huang, H.; Chen, Q.; Luo, M.; Sun, A.; Song, Y.; Ma, J.;
(
(
densation domain-mediated peptide bond formation using fMet-
Met
tRNA
and the PCP-tethered L-Val residue as substrates.
(
Alternatively, MfnA (not the F domain)-mediated peptide bond
1
0
formation may take place using N -fH Fand the PCP-tethered L-
4
(
̈
jen, W.;
Val residue as substrates.
̈
Among NRPS-based systems, it is a unique feature of the mfn
machinery that preassembly line methylation of Tyr takes place.
More surprising is that the agent of this change, MfnG, can use
both L- and D-Tyr as substrates yet the natural MFNs contain
exclusively the O-methyl-D-Tyr moiety. These observations are
especially intriguing in light of the putative epimerase domains
embedded within the NRPS machinery. Moreover, these findings
provide clues relevant to understanding the biosynthetic pathway
of the cyclic peptide aplidine. Importantly, aplidine, now in
clinical trials, also contains a methyl-O-Tyr moiety whose
2
(
(
(
5
generation remains unclear.
In summary, we have employed genome scanning, bio-
informatics analyses, gene inactivations, and in vitro biochemical
experiments to identify and validate the 45 kb mfn biosynthetic
gene cluster in Streptomyces drozdowiczii SCSIO 10141.
Significant attention has been paid to tailoring steps involved in
MFN production. These steps include two unusual pre-NRPS
assembly line transformations, (i) an N-terminal formylation step
and (ii) a pre-NRPS O-methylation step, to afford O-methyl-L-
Tyr and O-methyl-D-Tyr as MFN building blocks (although only
the D isomer appears within completed MFN scaffolds).
Following completion of NRPS-directed steps and liberation
from the NRPS machinery, a novel, regio- and stereospecific
hydroxylation of the MFN piperazic acid moiety was carried out
(
Ju, J. Org. Lett. 2013, 15, 3254−3257.
(15) Zhang, W.; Heemstra, J. R., Jr.; Walsh, C. T.; Imker, H. J.
Biochemistry 2010, 49, 9946−9947.
(16) Crawford, J. M.; Portmann, C.; Kontnik, R.; Walsh, C. T.; Clardy,
J. Org. Lett. 2011, 13, 5144−5147.
(
17) Zhang, W.; Ntai, I.; Kelleher, N. L.; Walsh, C. T. Proc. Natl. Acad.
Sci. U.S.A. 2011, 108, 12249−12253.
18) Schoenafinger, G.; Schracke, N.; Linne, U.; Marahiel, M. A. J. Am.
Soc. Chem. 2006, 128, 7406−7407.
19) Jungmann, V.; Molnar, I.; Hammer, P. E.; Hill, D. S.; Zirkle, R.;
(
(
́
Buckel, T. G.; Buckel, D.; Ligon, J. M.; Pachlatko, J. P. Appl. Environ.
Microbiol. 2005, 71, 6968−6976.
̈
(20) Rouhiainen, L.; Paulin, L.; Suomalainen, S.; Hyytiainen, H.;
(
by MfnN). These findings set the stage for full characterization
Buikema, W.; Haselkorn, R.; Sivonen, K. Mol. Microbiol. 2000, 37, 156−
of the biosynthetic mechanisms driving MFN production and
enable the engineering of new MFN analogues using
combinatorial or precursor-directed biosynthetic strategies for
antibacterial drug discovery.
167.
(
21) Bosello, M.; Mielcarek, A.; Giessen, T. W.; Marahiel, M. A.
Biochemistry 2012, 51, 3059−3066.
D
Org. Lett. XXXX, XXX, XXX−XXX