Y. Okada, K. Shimada, Y. Kitano, K. Chiba
SHORT COMMUNICATION
suggested that environmental polarity could be monitored Acknowledgments
in real time by using these compounds.
This work was partially supported by a Grant-in-Aid for Scientific
Research from the Ministry of Education, Culture, Sports, Science
and Technology of Japan.
Conclusions
[
1] For recent reviews of emissive nucleoside analogues, see: a)
Y. N. Teo, E. T. Kool, Chem. Rev. 2012, 112, 4221–4245; b)
R. W. Sinkeldam, N. J. Greco, Y. Tor, Chem. Rev. 2010, 110,
The experimental results presented herein illustrate a
short-step approach to emissive RNA homonucleosides
synthesized by anodic cycloaddition in combination with
2579–2619.
stereoselective allylation. The carbonyl substituent had a [2] J. Sˇ tambaský, M. Hocek, P. Ko cˇ ovský, Chem. Rev. 2009, 109,
6
729–6764 and references cited therein.
3] a) G. Romeo, U. Chiacchio, A. Corsaro, P. Merino, Chem. Rev.
010, 110, 3337–3370; b) J. Gotkowska, J. Balzarini, D. G. Pi-
large impact on the photophysical properties of the respec-
tive homonucleosides that could fine-tune the emission col-
ors, and this enables the rational design of reaction-based
emissive probes. Notably, our approach can form emissive
RNA homonucleosides from nonemissive precursors in one
step, and the stereochemistry at the anomeric position can
be validated prospectively through allylation.
[
2
otrowska, Tetrahedron Lett. 2012, 53, 7097–7100; c) D. C.
Pryde, D. S. Middleton, P. T. Stephenson, P. Wainwright, A.
Maddaford, X. Zhang, D. Leese, R. Glen, J. Hart, N. Forrest,
T. Guyot, Tetrahedron Lett. 2011, 52, 6415–6419; d) R. Sal-
adino, U. Ciambecchini, S. Hanessian, Eur. J. Org. Chem. 2003,
4401–4405; e) B. Richichi, S. Cicchi, U. Chiacchio, G. Romeo,
A. Brandia, Tetrahedron Lett. 2003, 59, 5231–5240; f) V. P. Ra-
jappan, X. Yin, S. W. Schneller, Tetrahedron 2002, 58, 9889–
9895; g) A. Bianco, D. Celona, S. Di Rita, M. Guiso, C. Mel-
Experimental Section
chioni, F. Umani, Eur. J. Org. Chem. 2001, 4061–4066; h) F.
Girard, C. Demaison, M. G. Lee, L. A. Agrofoglio, Tetrahe-
dron 1998, 54, 8745–8752; i) S. Pan, N. M. Amankulor, K.
Zhao, Tetrahedron 1998, 54, 6587–6604; j) J. H. Boal, A. Wilk,
C. L. Scremin, G. N. Gray, L. R. Phillips, S. L. Beaucage, J.
Org. Chem. 1996, 61, 8617–8626; k) N. Hossain, N. Blaton, O.
Peeters, J. Rozenski, P. A. Herdewijn, Tetrahedron 1996, 52,
General Procedure for the Allylation of Acetoxy
or 4 with Methallyltrimethylsilane (2): Methallyltrimethylsilane (2,
.0 equiv.) was added under argon at 0 °C to a stirred solution of
D-Ribofuranose 1
3
β-d-ribofuranose 1,2,3,5-tetraacetate (1) or 2,3-O-isopropylidene
diacetate (4) in the respective solvent. After 10 min, the Lewis acid
5563–5578; l) N. Hossain, C. Hendrix, E. Lescrinier, A.
(
1.5–2.5 equiv.) was added dropwise. The resulting reaction mixture
was then warmed to room temperature naturally and stirred for a
further 6 h, followed by quenching with saturated NaHCO (aq.).
The aqueous phase was extracted with EtOAc, and the combined
organic layers were washed with brine, dried with MgSO , and con-
Van Aerschot, R. Busson, E. De Clercq, P. Herdewijn, Bioorg.
Med. Chem. Lett. 1996, 6, 1465–1468.
3
[
4] a) A. Hosomi, M. Endo, H. Sakurai, Chem. Lett. 1976, 941–
942; b) I. Fleming, A. Pearce, R. L. Snowden, J. Chem. Soc.,
4
Chem. Commun. 1976, 182–183; c) A. Hosomi, M. Endo, H.
Sakurai, Chem. Lett. 1978, 499–502; d) I. Ojima, M. Kumagai,
Chem. Lett. 1978, 575–578; e) T. Tsunoda, M. Suzuki, R.
Noyori, Tetrahedron Lett. 1980, 21, 71–74.
centrated in vacuo. Purification by silica gel column chromatog-
raphy (EtOAc/hexanes) gave the desired methallyl C-glycoside of
d-ribofuranose (3).
[
5] a) T. L. Cupps, D. S. Wise, L. B. Townsend, J. Org. Chem. 1982,
47, 5115–5120; b) A. P. Kozikowski, K. L. Sorgi, Tetrahedron
Lett. 1982, 23, 2281–2284; c) A. P. Kozikowski, K. L. Sorgi,
B. C. Wang, Z.-B. Xu, Tetrahedron Lett. 1983, 24, 1563–1566;
d) J. A. Bennek, G. R. Gray, J. Org. Chem. 1987, 52, 892–897;
e) T. Mukaiyama, S. Kobayashi, Carbohydr. Res. 1987, 171,
General Procedure for the Anodic Construction of the [3+2] Cycload-
ducts by Using Methoxyphenols 6–8: Methoxyphenols 6–8, 3
(
10 equiv.), and AcOH (5%) were added to a solution of lithium
perchlorate (3.0 m in MeNO ). carbon felt anode
20 mmϫ20 mm) and a platinum cathode (20 mmϫ20 mm) were
2
A
(
8
1–87; f) S. Sasaki, Y. Taniguchi, R. Takahashi, Y. Senko, K.
inserted into the solution, and electrolysis was performed by using
an undivided cell with stirring at a constant potential of 1.1–1.3 V
versus Ag/AgCl at room temperature. An electric charge of 2.5 F
was passed through the solution (also monitored by TLC), followed
by dilution with EtOAc. The organic layer was washed with brine,
dried with MgSO , and concentrated in vacuo. Purification by sil-
4
ica gel column chromatography (EtOAc/hexanes) gave acetylated
homonucleosides 9–11.
Kodama, F. Nagatsugi, M. Maeda, J. Am. Chem. Soc. 2004,
126, 516–528; g) G. X. Chang, T. L. Lowary, Tetrahedron Lett.
2
006, 47, 4561–4564; h) X. Li, J. Li, D. R. Mootoo, Org. Lett.
2007, 9, 4303–4306; i) C. V. Ramana, K. A. Durugkar, V. G.
Puranik, S. B. Narute, B. L. V. Prasad, Tetrahedron Lett. 2008,
49, 6227–6230.
[
[
6] For recent examples of intermolecular carbon–carbon bond-
4 2
forming reactions in LiClO /MeNO electrolyte solution, see:
a) Y. Yamaguchi, Y. Okada, K. Chiba, J. Org. Chem. 2013, 78,
2626–2638; b) Y. Okada, Y. Yamaguchi, K. Chiba, Eur. J. Org.
Chem. 2012, 243–246; c) Y. Okada, T. Yoshioka, M. Koike, K.
Chiba, Tetrahedron Lett. 2011, 52, 4690–4693; d) Y. Okada, A.
Nishimoto, R. Akaba, K. Chiba, J. Org. Chem. 2011, 76, 3470–
General Procedure for the Basic Deprotection of Acetylated Homo-
nucleosides 9–11: MeONa (5.0 m in MeOH, 5%) was added drop-
wise at room temperature to a stirred solution of acetylated homo-
nucleosides 9–11 in MeOH. The resulting reaction mixture was
then stirred for another 1.5 h, followed by neutralizing with cation
exchange resin. After filtration, the filtrate was concentrated in
vacuo to give homonucleosides 12–14. In some cases, purification
3
1
476; e) Y. Okada, K. Chiba, Electrochim. Acta 2011, 56, 1037–
042.
7] S. Kim, K. Hirose, J. Uematsu, Y. Mikami, K. Chiba, Chem.
Eur. J. 2012, 18, 6284–6288.
[8] a) J. P. McDevitt, P. T. Lansbury Jr., J. Am. Chem. Soc. 1996,
118, 3818–3828; b) U. Diederichsen, C. M. Biro, Bioorg. Med.
Chem. Lett. 2000, 10, 1417–1420.
9] a) C. H. Larsen, B. H. Ridgway, J. T. Shaw, D. M. Smith, K. A.
Woerpel, J. Am. Chem. Soc. 2005, 127, 10879–10884; b) D. M.
Smith, K. A. Woerpel, Org. Lett. 2004, 6, 2063–2066; c) D. M.
by silica gel column chromatography (MeOH/CH
quired.
2
Cl
2
) was re-
Supporting Information (see footnote on the first page of this arti-
[
cle): Additional general information, spectral information and cop-
1
13
ies of the H and C NMR spectra.
1374
www.eurjoc.org
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2014, 1371–1375