10.1002/ejoc.201900714
European Journal of Organic Chemistry
COMMUNICATION
[1]
[2]
a) S. A. Girard, T. Knauber, C.-J. Li, Angew. Chem. Int. Ed. 2014, 53,
74−100; Angew. Chem. 2014, 126, 76–103; b) M.-L. Louillat, F. W.
Patureau, Chem. Soc. Rev. 2014, 43, 901–910; c) J. Jiao, K. Murakami,
K Itami, ACS Catal. 2016, 6, 610–633; d) H. Kim, S. Chang, ACS Catal.
2016, 6, 2341–2351.
mmol), 8 mL MeCN, no electricity, 1 h. [g] 1a-K (0.2 mmol), 2a (0.6 mmol), 8 mL
MeCN, 7mA, 1 h. [h] 1a-K (0.2 mmol), 6a (0.6 mmol), 8 mL MeCN, no electricity,
1 h. [i] Not detected.
Based on these experimental results and the fact that xanthene /
cycloheptatriene or their radicals can be easily oxidized to
generate stabilized carbocations,[8a,10,11d] we believe the
carbocations are the most plausible key intermediates in these C–
N bond forming reactions. A similar mechanism has also been
proposed in Zeng’s work on electrochemical C-N cross-coupling
of xanthenes with N-alkoxyamides, although the nitrogen anions
a) E. J. Horn, B. R. Rosen, Y. Chen, J. Tang, K. Chen, M. D. Eastgate,
P. S. Baran, Nature 2016, 533, 78−81; b) N. Fu, G. S. Sauer, A. Saha,
A. Loo, S. Lin, Science 2017, 357, 575−579; c) Y. Zhao, Y.-L. Lai, K.-S.
Du, D.-Z. Lin, J.-M. Huang, J. Org. Chem. 2017, 82, 9655−9661; d) P.
Xiong, H.-H. Xu, H.-C. Xu, J. Am. Chem. Soc. 2017, 139, 2956−2959; e)
Q.-L. Yang, Y.-Q. Li, C. Ma, P. Fang, X.-J. Zhang, T.-S. Mei, J. Am. Chem.
Soc. 2017, 139, 3293−3298; f) Y. Qiu, A. Scheremetjew, L. Ackermann,
J. Am. Chem. Soc. 2017, 141, 2731−2738; g) S. Tang, S. Wang, Y. Liu,
H. Cong, A. Lei, Angew. Chem. Int. Ed. 2018, 57, 4737–4741; Angew.
Chem. 2018, 130, 4827–4831; for recent reviews on electrochemistry in
organic synthesis: h) M. Yan, Y. Kawamata, P. S. Baran, Chem. Rev.
2017, 117, 13230–13319; i) S. Tang, Y. Liu, A. Lei, Chem. 2018, 4,
27−45; j) Y. Zhao, W. Xia, Chem. Soc. Rev. 2018, 47, 2591−2608; k) M.
D. Karkas, Chem. Soc. Rev. 2018, 47, 5786−5865; l) J.-i. Yoshida, A.
Shimizu, R. Hayashi, Chem. Rev. 2018, 118, 4702–4730; m) Y. Jiang, K.
Xu, C. Zeng, Chem. Rev. 2018, 118, 4485–4540; n) N. Sauermann, T.
H. Meyer, Y. Qiu, L. Ackermann, ACS Catal. 2018, 8, 7086−7103.
a) A. Giraudeau, L. Ruhlmann, L. E. Kahef, M. Gross, J. Am. Chem. Soc.
1996, 118, 2969–2979; b) G. de Robillard, O. Makni, H. Cattey, J.
Andrieu, C. H. Devillers, Green Chem. 2015, 17, 4669–4679; c) S. R.
Waldvogel, S. Moehle, Angew. Chem. Int. Ed. 2015, 54, 6398−6399;
Angew. Chem. 2015, 127, 6496–6497; d) M. Gong, J.-M. Huang, Chem.
Eur. J. 2016, 22, 14293–14296; e) H.-B Zhao, Z.-W Hou, Z.-J. Liu, Z.-F.
Zhou, J. Song, H.-C. Xu, Angew. Chem. Int. Ed. 2017, 56, 587–590;
Angew. Chem. 2017, 129, 602–605; f) S. Tang, L. Zeng, A. Lei J. Am.
Chem. Soc. 2018, 140, 13128–13135; g) M. Berthelot, G. Hoffmann, A.
Bousfiha, J. Echaubard, J. Roger, H. Cattey, A. Romieu, D. Lucas, P.
Fleurat-Lessard, C. H. Devillers, Chem.Commun. 2018, 54, 5414–5417;
h) Y.-A. Qiu, J. Struwe, T. H. Meyer, J. C. A. Olivira, L Ackermann, Chem.
Eur. J. 2018, 24, 12784−12789; i) F. Lian, C. Sun, K. Xu, C. Zeng, Org.
Lett. 2019, 21, 156–159.
are produced by a base additive (1.0 equivalent of Na2CO3).[9a]
A
representative pathway of C-N bond formation of cycloheptatriene
and xanthenes with imides and azoles is shown in Scheme 4.
[3]
Scheme 4. Proposed mechanism for electrochemical C-N coupling.
Conclusions
[4]
a) H.-C. Xu, K. D. Moeller, J. Am. Chem. Soc. 2008, 130, 13542−13543;
b) F. Xu, L. Zhu, S.-B. Zhu, X.-M. Yan, H.-C. Xu, Chem. Eur. J. 2014, 20,
12740−12744; c) Z.-W. Hou, Z.-Y. Mao, H.-B. Zhao, Y. Y. Melcamu, X.
Lu, J.-S. Song, H.-C. Xu, Angew. Chem. Int. Ed. 2016, 55, 9168−9172;
Angew. Chem. 2016, 128, 9314–9318.
In summary, we report an electrochemistry-enabled
intermolecular oxidative C-N coupling reactions of azoles and
imides with 1,3,5-cycloheptatriene and xanthenes. Mechanistic
studies demonstrated the tropylium ion and xanthene cations are
generated by anodic oxidation and serve as the key intermediates
to form the C–N bond. These cationic intermediates are highly
electrophilic and are attacked directly by azoles to deliver the C–
N coupled products. In the case of imides, due to their low
nucleophilicity, cathodic reduction of imides to their anions is
proposed to be involved.
[5]
[6]
S. Torii in Electroorganic Syntheses, Part 1 (Eds.: H. F. Ebel), Wiley-VCH,
Kodansha, 1985, pp. 67-68.
It has been established that several carbocations could be accumulated
through the anodic oxidation of substrates in the absence of nucleophiles
at low temperature, known as the ‘cation pool’ method, see ref 2l for
details.
[7]
For recent applications in the generation of gold carbenes from
derivatives of 1,3,5-cycloheptatrienes: a) Y. Wang, P. R. McGonigal, B.
Herlé, M. Besora, A. M. Echavarren, J. Am. Chem. Soc. 2014, 136, 801–
809; b) Y. Wang, M. E. Muratore, Z. Rong, A. M. Echavarren, Angew.
Chem. Int. Ed. 2014, 53, 14022–14026; Angew. Chem. 2014, 126,
14246–14250; c) X. Yin, M. Mato, A. M. Echavarren, Angew. Chem. Int.
Ed. 2017, 56, 14591–14595; Angew. Chem. 2017,129,14783–14787; d)
M. Mato, C. García-Morales, A. M. Echavarren, ChemCatChem 2019, 11,
53–72; and recent application of cycloheptatrienes in supramolecular
chemistry: e) A. N. Bismillah, J. Sturala, B. M. Chapin, D. S. Yufit, P.
Hodgkinson, P. R. McGonigal, Chem. Sci. 2018, 9, 8631–8636; and
applications in stimuli-responsive organic dyes: f) D. Josephine, M.
Lyons, R. D. Crocker, T. V. Nguyen, Chem. Eur. J. 2018, 24, 10959–
10965.
Acknowledgements
We acknowledge financial support by the National Natural
Science Foundation of China (21702105), Natural Science
Foundation of Jiangsu Province, China (BK20170981), Nanjing
Tech University and SICAM Fellowship by Jiangsu National
Synergetic Innovation Center for Advanced Materials. We thank
Prof. Echavarren in ICIQ for valuable discussions and Prof.
McGonigal in Durham University for proof reading.
[8]
For recent papers on oxidative functionalization of xanthenes: a) A.
Pinter, A. Sud, D. Sureshkumar, M. Klussmann, Angew. Chem. Int. Ed.
2010, 49, 5004−5007; Angew. Chem. 2010, 122, 5124–5128; b) B.
Zhang, S. Xiang, L. Zhang, Y. Cui, N. Jiao, Org. Lett. 2011, 13,
5212−5215; c) B. Schweitzer-Chaput, A. Sud, A. Pinter, S. Dehn, P.
Keywords: electrochemistry • carbon-nitrogen bond • anode •
oxidation • synthesis
This article is protected by copyright. All rights reserved.