Dalton Transactions
Communication
The authors gratefully acknowledge the support of the 16 H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi,
Australian Research Council. This research is supported by the
Science and Industry Endowment Fund. Part of this research
was undertaken on the Powder Diffraction beamline at the
Australian Synchrotron, Victoria, Australia.
E. Choi, A. Ö. Yazaydin, R. Q. Snurr, M. O’Keeffe,
J. Kim and O. M. Yaghi, Science, 2010, 329, 424–
428.
17 O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser,
C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen,
A. Ö. Yazaydin and J. T. Hupp, J. Am. Chem. Soc., 2012, 134,
15016–15021.
18 S. K. Elsaidi, M. H. Mohamed, L. Wojtas, A. Chanthapally,
T. Pham, B. Space, J. J. Vittal and M. J. Zaworotko, J. Am.
Chem. Soc., 2014, 136, 5072–5077.
19 I. Senkovska and S. Kaskel, Chem. Commun., 2014, 50,
7089–7098.
20 H. Liu, Q. Wang, M. Zhang and J. Jiang, CrystEngComm,
2015, 17, 4793–4798.
Notes and references
‡Crystal data for cis-Mg(dhbq)(H2O)2·2H2O·2.5MeOH: [C8.5H20MgO10.5] mono-
clinic, C2/c, a = 21.0769(13) Å, b = 15.6680(8) Å, c = 9.2192(4) Å, β = 103.261(12)°,
V = 2963.3(3) Å3, Z = 8, λ = 1.54184 Å, T = 130 K, reflections collected 4769, 2818
unique (Rint = 0.0428). R1 0.0571 (I > 2σ(I)), wR2 0.1562 (all data), GOF = 0.996.
Crystal data for cis-Zn(dhbq)(H2O)2·2H2O·1.5EtOH: [C9H19O9.5Zn], monoclinic,
C2/c, a = 21.4589(10) Å, b = 15.5785(6) Å, c = 9.2643(3) Å, β = 102.941(4)°, V =
3018.4(2) Å3, Z = 8, λ = 1.54184 Å, T = 130 K, reflections collected 4348, 2303
unique (Rint = 0.0329). R1 0.0427 (I > 2σ(I)), wR2 0.1180 (all data), GOF = 0.922.
21 T. Pham, K. A. Forrest, A. Hogan, B. Tudor, K. McLaughlin,
J. L. Belof, J. Eckert and B. Space, Cryst. Growth Des., 2015,
15, 1460–1471.
Crystal data for trans-Mg(dhbq)(H2O)2: [C6H6MgO6], monoclinic, C2/m,
6.8276(7) Å, b = 7.6461(7) Å, c = 7.8635(7) Å, β = 112.777(12)°, V = 378.50(7) Å3,
Z = 2, λ = 1.54184 Å, T = 130 K, reflections collected 745, 379 unique (Rint
a =
=
0.0303). R1 0.0424 (I > 2σ(I)), wR2 0.1169 (all data), GOF = 1.090. Crystal data for
trans-Zn(dhbq)(H2O)2: [C6H6O6Zn], monoclinic, C2/m, a = 6.715(2) Å, b = 7.7544
(13) Å, c = 7.842(2) Å, β = 113.45(3)°, V = 374.6(1) Å3, Z = 2, λ = 1.54184 Å, T =
130 K, reflections collected 757, 381 unique (Rint = 0.0257). R1 0.0340 (I > 2σ(I)),
wR2 0.0893 (all data), GOF = 1.128.
22 P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns,
R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas,
M. Eddaoudi and M. J. Zaworotko, Nature, 2013, 495, 80–84.
23 B. Liu, Y.-H. Jiang, Z.-S. Li, L. Hou and Y.-Y. Wang, Inorg.
Chem. Front., 2015, 2, 550–557.
1 S. R. Batten, S. M. Neville and D. R. Turner, Coordination 24 Z. Guo, H. Wu, G. Srinivas, Y. Zhou, S. Xiang, Z. Chen,
polymers: design, analysis and application, Royal Society of
Chemistry, 2009.
Y. Yang, W. Zhou, M. O’Keeffe and B. Chen, Angew. Chem.,
Int. Ed., 2011, 50, 3178–3181.
2 C. M. Doherty, D. Buso, A. J. Hill, S. Furukawa, S. Kitagawa 25 L. C. Lin, J. Kim, X. Kong, E. Scott, T. M. McDonald,
and P. Falcaro, Acc. Chem. Res., 2013, 47, 396–405.
3 M. L. Foo, R. Matsuda and S. Kitagawa, Chem. Mater., 2014,
26, 310–322.
4 B. F. Hoskins and R. Robson, J. Am. Chem. Soc., 1989, 111,
5962–5964.
5 B. F. Hoskins and R. Robson, J. Am. Chem. Soc., 1990, 112,
1546–1554.
6 V. Stavila, A. A. Talin and M. D. Allendorf, Chem. Soc. Rev.,
2014, 43, 5994–6010.
J. R. Long, J. A. Reimer and B. Smit, Angew. Chem., Int. Ed.,
2013, 125, 4506–4509.
26 A. Das and D. M. D’Alessandro, CrystEngComm, 2015, 17,
706–718.
27 T. M. McDonald, J. A. Mason, X. Kong, E. D. Bloch, D. Gygi,
A. Dani, V. Crocellà, F. Giordanino, S. O. Odoh,
W. S. Drisdell, B. Vlaisavljevich, A. L. Dzubak, R. Poloni,
S. K. Schnell, N. Planas, K. Lee, T. Pascal, L. F. Wan,
D. Prendergast, J. B. Neaton, B. Smit, J. B. Kortright,
L. Galliardi, S. Bordiga and J. A. Reimer, Nature, 2015, 519,
303–308.
7 Z. Ma and B. Moulton, Coord. Chem. Rev., 2011, 255, 1623–
1641.
8 J.-R. Li, J. Sculley and H.-C. Zhou, Chem. Rev., 2012, 112, 28 S. A. Sapchenko, D. N. Dybtsev, D. G. Samsonenko,
869–932.
R. V. Belosludov, V. R. Belosludov, Y. Kawazoe, M. Schröder
and V. P. Fedin, Chem. Commun., 2015, 51, 13918–13921.
29 S. Kitagawa and S. Kawata, Coord. Chem. Rev., 2002, 224,
11–34.
30 S. Kitagawa, R. Kitaura and S. i. Noro, Angew. Chem., Int.
Ed., 2004, 43, 2334–2375.
31 S. Morikawa, T. Yamada and H. Kitagawa, Chem. Lett.,
2009, 38, 654–655.
32 T. Yamada, S. Morikawa and H. Kitagawa, Bull. Chem. Soc.
Jpn., 2010, 83, 42–48.
9 J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang and C.-Y. Su,
Chem. Soc. Rev., 2014, 43, 6011–6061.
10 Z. Hu, B. J. Deibert and J. Li, Chem. Soc. Rev., 2014, 43,
5815–5840.
11 M. P. Suh, H. J. Park, T. K. Prasad and D.-W. Lim, Chem.
Rev., 2012, 112, 782–835.
12 R. Sabouni, H. Kazemian and S. Rohani, Environ. Sci.
Pollut. Res., 2014, 21, 5427–5449.
13 K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald,
E. D. Bloch, Z. R. Herm, T.-H. Bae and J. R. Long, Chem. 33 B. F. Abrahams, T. A. Hudson, L. J. McCormick and
Rev., 2012, 112, 724–781. R. Robson, Cryst. Growth Des., 2011, 11, 2717–2720.
14 Y. He, W. Zhou, G. Qian and B. Chen, Chem. Soc. Rev., 34 B. F. Abrahams, A. M. Bond, T. H. Le, L. J. McCormick,
2014, 43, 5657–5678.
15 Y. Yan, X. Lin, S. Yang, A. J. Blake, A. Dailly,
A. Nafady, R. Robson and N. Vo, Chem. Commun., 2012, 48,
11422–11424.
N. R. Champness, P. Hubberstey and M. Schröder, Chem. 35 J. Sculley, D. Yuan and H.-C. Zhou, Energy Environ. Sci.,
Commun., 2009, 1025–1027.
2011, 4, 2721–2735.
This journal is © The Royal Society of Chemistry 2016
Dalton Trans.