Inorganic Chemistry
Article
Corsini, M.; Gabbiani, C.; Orfei, M.; Rosani, C.; Ginanneschi, M.
New Copper(II)/Cyclic Tetrapeptide System that Easily Oxidizes to
Copper(III) under Atmospheric Oxygen. Inorg. Chem. 2007, 46,
10038−10040. Keown, W.; Gary, J. B.; Stack, T. D. P. High-valent
Copper in Biomimetic and Biological Oxidations. JBIC, J. Biol. Inorg.
Chem. 2017, 22, 289−305.
(11) Barrette, W. C., Jr.; Johnson, H. W.; Sawyer, D. T.
Voltammetric Evaluation of the Effective Acidities (pKa’) for
Broensted Acids in Aprotic Solvents. Anal. Chem. 1984, 56, 1890−
1898.
Stress Corrected for Severity of Dopaminergic Neural Degeneration
in Patientis with Parkinson’s Disease: A Study with 62Cu-ATSM PET
and 123I-FP-CIT SPECT. Eur. Neurol. 2017, 78, 161−168.
(29) Donnelly, P. S.; Liddell, J. R.; Lim, S.-C.; Paterson, B. M.;
Cater, M. A.; Savva, M. S.; Mot, A. I.; James, J. L.; Trounce, I. A.;
White, A. R.; Crouch, P. J. An Impaired Mitochondrial Electron
Transport Chain Increases Retention of the Hypoxia Imaging Agent
Diacetylbis(4-methylthiosemicarbazonato)copperII. Proc. Natl. Acad.
Sci. U. S. A. 2012, 109, 47−52.
(30) Stefani, C.; Al-Eisawi, Z.; Jansson, P. J.; Kalinowski, D. S.;
Richardson, D. R. Identification of Differential Anti-neoplastic
Activity of Copper bis(thiosemicarbazones) that is Mediated by
Intracellular Reactive Oxygen Species Generation and Lysosomal
Membrane Permeation. J. Inorg. Biochem. 2015, 152, 20−37.
(31) Whittaker, J. W. The Free Radical-Coupled Copper Oxidative
Site in Galactose Oxidase. In Metal Ions in Biological Systems; Sigel, H.,
Sigel, A., Eds.; Marcel Dekker: New York, 1994; Vol. 30, pp 315−360.
́
́
(12) Dominguez, A.; Fernandez, A.; Gonzalez, N.; Iglesias, E.;
Montenegro, L. Determination of the Critical Micelle Concentration
of Some Surfactants by Three Techniques. J. Chem. Educ. 1997, 74,
1227−1231.
(13) Hickey, J. L.; James, J. L.; Henderson, C. A.; Price, K. A.; Mot,
A. I.; Buncic, G.; Crouch, P. J.; White, J. M.; White, A. R.; Smith, T.
A.; Donnelly, P. S. Intracellular Distribution of Fluorescent Copper
and Zinc Bis(thiosemicarbazonato) Complexes Measured with
Fluorescence Lifetime Spectroscopy. Inorg. Chem. 2015, 54, 9556−
9567.
(32) Chaudhuri, P.; Hess, M.; Mu
̈
ller, J.; Hildenbrand, K.; Bill, E.;
Weyhermuller, T.; Wieghardt, K. Aerobic Oxidation of Primary
̈
Alcohols (Including Methanol) by Copper(II)- and Zinc(II)-
Phenoxyl Radical Catalysts. J. Am. Chem. Soc. 1999, 121, 9599−9610.
(33) Choi, D.-K.; Pennathur, S.; Perier, C.; Tieu, K.; Teismann, P.;
Wu, D.-C.; Jackson-Lewis, V.; Vila, M.; Vonsattel, J.-P.; Heinecke, J.
W.; Przedborski, S. J. Ablation of the Inflammatory Enzyme
Myeloperoxidase Mitigates Features of Parkinson’s Disease in Mice.
Neuroscience 2005, 25, 6594−6600.
(14) Furtmuller, P. G.; Arnhold, J.; Jantschko, W.; Pichler, H.;
̈
Obinger, C. Redox Properties of the Couples Compound I/
Compound II and Compound II/Native Enzyme of Human
Myeloperoxidase. Biochem. Biophys. Res. Commun. 2003, 301, 551−
557.
(15) Hayashi, Y.; Yamazaki, I. The Oxidation-Reduction Potentials
of Compound I/Compound II and Compound II/Ferric Couples in
Horseradish Peroxidases A2 and C. J. Biol. Chem. 1979, 254, 9101−
9106.
(16) Ooi, S.; Carter, D.; Fernando, Q. The Structure of a Chelate of
Copper(II) with 1-(2-Pyridylazo)-2-Napthol. Chem. Commun. 1967,
1301−1302.
(17) Childs, R. E.; Bardsley, W. G. The Steady-state Kinetics of
Peroxidase with 2,2′-Azino-di-(3-ethyl-benzthiazoline-6-sulphonic
acid) as Chromagen. Biochem. J. 1975, 145, 93−103.
(18) Klebanoff, S. J.; Kettle, A.; Rosen, H.; Winterbourn, C. C.;
Nauseef, W. M. Myeloperoxidase: A Front-line Defender Against
Phagocytosed Microorganisms. J. Leukocyte Biol. 2013, 93, 1−14.
Hurst, J. K. What Really Happens in the Neutrophil Phagosome? Free
Radical Biol. Med. 2012, 53, 508−520.
(34) Maki, R. A.; Tyurin, V. A.; Lyon, R. C.; Hamilton, R. L.;
DeKosky, S. T.; Kagan, V. E.; Reynolds, W. F. Aberrant Expression of
Myeloperoxidase in Astrocytes Promotes Phospholipid Oxidation and
Memory Deficits in a Mouse Model of Alzheimer Disease. J. Biol.
Chem. 2009, 284, 3158−3169.
(35) Green, P. S.; Mendez, A. J.; Jacob, J. S.; Crowley, J. R.;
Growdon, W.; Hyman, B. T.; Heinecke, J. W. Neuronal Expression of
Myeloperoxidase is Increased in Alzheimer’s Disease. J. Neurochem.
2004, 90, 724−733.
(36) Jeitner, T. M.; Kalogiannis, M.; Krasnikov, B. F.; Gomlin, I.;
Peltier, M. R.; Moran, G. R. Linking Inflammation and Parkinson
Disease: Hypochlorous Acid Generates Parkinsonian Poisons. Toxicol.
Sci. 2016, 151, 388−402.
(37) Elzanowska, H.; Wolcott, R. G.; Hannum, D. M.; Hurst, J. K.
Bactericidal Properties of Hydrogen Peroxide and Copper or Iron-
containing Complex Ions in Relation to Leukocyte Function. Free
Radical Biol. Med. 1995, 18, 437−449.
(38) Djoko, K. Y.; Paterson, B. M.; Donnelly, P. S.; McEwan, A. G.
Antimicrobial Effects of Copper(II) Bis(thiosemicarbazonato) Com-
plexes Provide New Insight into their Biochemical Mode of Action.
Metallomics 2014, 6, 854−863.
(39) Djoko, K. Y.; Goytia, M. M.; Donnelly, P. S.; Schembri, M. A.;
Shafer, W. M.; McEwan, A. G. Copper(II)-Bis(Thiosemicarbazonato)
Complexes as Antibacterial Agents: Insights into Their Mode of
Action and Potential as Therapeutics. Antimicrob. Agents Chemother.
2015, 59, 6444−6453.
(40) Beraldo, H.; Kaisner, S. B.; Turner, J. D.; Billeh, I. S.; Ives, J. S.;
West, D. X. Copper (II) and Nickel(II) Complexes of the Bis{N(3)-
Substituted Thiosemicarbazones} of Phenylglyoxyl and 1-Phenyl-
propane-1,2-Dione. Transition Met. Chem. 1997, 22, 459−464.
(41) Hueting, R.; Christlieb, M.; Dilworth, J. R.; Garayoa, E. G.;
(19) Pacher, P.; Beckman, J. S.; Liaudet, L. Nitric Oxide and
Peroxynitrite in Health and Disease. Physiol. Rev. 2007, 87, 315−424.
(20) Ischiropoulos, H.; Zhu, L.; Beckman, J. S. Peroxynitrite
Formation from Macrophage-derived Nitric Oxide. Arch. Biochem.
Biophys. 1992, 298, 446−451.
(21) Lymar, S. V.; Hurst, J. K. Rapid Reaction between Peroxonitrite
Ion and Carbon Dioxide: Implications for Biological Reactivity. J. Am.
Chem. Soc. 1995, 117, 8867−8868.
(22) Coddington, J. S.; Hurst, J. K.; Lymar, S. V. Hydroxyl Radical
Formation during Peroxynitrous Acid Decomposition. J. Am. Chem.
Soc. 1999, 121, 2438−2444.
́
(23) Goldstein, S.; Lind, J.; Merenyi, G. Chemistry of Peroxynitrites
as Compared to Peroxynitrates. Chem. Rev. 2005, 105, 2457−2470.
(24) Stanbury, D. A. Reduction Potentials involving Inorganic
Radicals in Aqueous Solution. Adv. Inorg. Chem. 1989, 33, 69−138.
(25) Ferrer-Sueta, G.; Campolo, N.; Trujillo, M.; Bartesaghi, S.;
Carballal, S.; Romero, N.; Alvarez, B.; Radi, R. Biochemistry of
Peroxynitrite and Protein Tyrosine Nitration. Chem. Rev. 2018, 118,
1338−1408.
́
Gouverneur, V.; Jones, M. W.; Maes, V.; Schibli, R.; Sun, X.; Tourwe,
D. Bis(thiosemicarbazones) as bifunctional chelators for the room
temperature 64-copper labeling of peptides. Dalton Trans. 2010, 39,
3620−3632.
(26) Jazdzewski, B. A.; Tolman, W. B. Understanding the Copper-
Phenoxyl Radical Array in Galactose Oxidase: Contributions from
Synthetic Modeling Studies. Coord. Chem. Rev. 2000, 200−202, 633−
685.
(42) Ikeda-Saito, M. Spectroscopic, Ligand Binding, and Enzymatic
Properties of Spleen Green Hemeprotein. A Comparison with
Myeloperoxidase. J. Biol. Chem. 1985, 260, 11688−11695.
(43) Klebanoff, S. J.; Waltersdorph, A. M.; Rosen, H. Antimicrobial
Activity of Myeloperoxidase. Methods Enzymol. 1984, 105, 399−403.
(44) Saha, A.; Goldstein, S.; Cabelli, D.; Czapski, G. Determination
of Optimal Conditions for Synthesis of Peroxynitrite by Mixing
(27) Roy, N.; Sproules, S.; Weyhermuller; Wieghardt, K. Trivalent
̈
Iron and Ruthenium Complexes with a Redox Noninnocent (2-
Mercaptophenylimino)-methyl-4,6-di-tert-butylphenolate(2-) Ligand.
Inorg. Chem. 2009, 48, 3783−3791.
(28) Neishi, H.; Ikawa, M.; Okazawa, H.; Tsujikawa, T.; Arishima,
H.; Kikuta, K. I.; Yoneda, M. Precise Evaluation of Striatal Oxidative
I
Inorg. Chem. XXXX, XXX, XXX−XXX