Y.-M. Cui et al. / Bioorg. Med. Chem. Lett. 18 (2008) 6386–6389
6389
14. McManus, O. B.; Harris, G. H.; Giangiacomo, K. M.; Feigenbaum, P.; Reuben, J.
P.; Addy, M. E.; Burka, J. F.; Kaczorowski, G. J.; Garcia, M. L. Biochemistry 1993,
32, 6128.
15. Lee, S. H.; Hensens, O. D.; Helms, G. L.; Liesch, J. M.; Zink, D. L.; Giacobbe, R. A.;
Bills, G. F.; Stevens-Miles, S.; Garcia, M. L.; Schmalhofer, W. A.; McManus, O. B.;
Kaczorowski, G. J. J. Nat. Prod. 1995, 58, 1822.
16. Dopico, A. M.; Walsh, J. V., Jr; Singer, J. J. J. Gen. Physiol. 2002, 119, 251.
17. Singh, S. B.; Goetz, M. A.; Zink, D. L.; Dombrowski, A. W.; Polishook, J. D.; Garcia,
M. L.; Schemalhofer, W.; McManus, O. B.; Kaczorowski, G. J. J. Chem. Soc., Perkin
Trans. 1 1994, 22, 3349.
18. Bentzen, B. H.; Nardi, A.; Calloe, K.; Madsen, L. S.; Olesen, S. P.; Grunnet, M. Mol.
Pharmacol. 2007, 72, 1033.
Acknowledgments
This work was supported by a Grant-in-Aid for Scientific Re-
search from the Ministry of Education, Science, Sports, and Culture
of Japan. Y.-M.C. is grateful for a postdoctoral fellowship for a for-
eign researcher from the Japan Society for the Promotion of Sci-
ence, and also thanks Prof. Masakatsu Shibasaki, Graduate School
of Pharmaceutical Sciences, The University of Tokyo, for valuable
discussions and encouragement in the late stage of this program.
19. Imaizumi, Y.; Sakamoto, K.; Yamada, A.; Hotta, A.; Ohya, S.; Muraki, K.;
Uchiyama, M.; Ohwada, T. Mol. Pharmacol. 2002, 62, 836.
20. Ohwada, T.; Nonomura, T.; Maki, K.; Sakamoto, K.; Ohya, S.; Muraki, K.;
Imaizumi, Y. Bioorg. Med. Chem. Lett. 2003, 13, 3971.
21. Sakamoto, K.; Nonomura, T.; Ohya, S.; Muraki, K.; Ohwada, T.; Imaizumi, Y.
J. Pharmacol. Exp. Ther. 2006, 316, 144.
22. Cui, Y.-M.; Yasutomi, E.; Otani, Y.; Yoshinaga, T.; Ido, K.; Sawada, K.; Ohwada, T.
Bioorg. Med. Chem. Lett. 2008, 18, 5201.
23. Tashima, T.; Toriumi, Y.; Mochizuki, Y.; Nonomura, T.; Nagaoka, S.; Furukawa, K.;
Tsuru, H.; Adachi-Akahane, S.; Ohwada, T. Bioorg. Med. Chem. 2006, 14, 8014.
24. Cui, Y.-M.; Yasutomi, E.; Otani, Y.; Yoshinaga, T.; Ido, K.; Sawada, K.; Ohwada, T.
Bioorg. Med. Chem. Lett. 2008, 18, 5197.
References and notes
1. Ghatta, S.; Nimmagadda, D.; Xu, X.; O’Rourke, S. T. Pharmacol. Ther. 2006, 110,
103.
2. Toro, L.; Wallner, M.; Meera, P.; Tanaka, Y. News Physiol. Sci. 1998, 13, 112.
3. Berkefeld, H.; Sailer, C. A.; Bildl, W.; Rohde, V.; Thumfart, J. O.; Eble, S.;
Klugbauer, N.; Reisinger, E.; Bischofberger, J.; Oliver, D.; Knaus, H. G.; Schulte,
U.; Fakler, B. Science 2006, 314, 615.
4. Loane, D. J.; Lima, P. A.; Marrion, N. V. J. Cell Sci. 2007, 120, 985.
5. Brayden, J. E.; Nelson, M. T. Science 1992, 256, 532.
6. Vergara, C.; Latorre, R.; Marrion, N. V.; Adelman, J. P. Curr. Opin. Neurobiol. 1998,
8, 321.
25. Crystallographic
C21H27Cl2NO3, Mr = 412.34; trigonal space group R3, a = 20.827(3) Å,
b = 20.827(3) Å, c = 13.399(2) Å, V = 5033.4(13) Å3, Z = 9, Dcalc = 1.224 g cmÀ3
T = 90 K, 10,086 total and 5104 observed [R(int) = 0.0379] reflections, 253
parameters, final [I > 2 (I)] R1 = 0.0402, wR2 = 0.1022, S = 1.032. CCDC
data:
crystal
dimensions
0.30 Â 0.20 Â 0.10 mm;
7. Salkoff, L.; Butler, A.; Ferreira, G.; Santi, C.; Wei, A. Nat. Rev. Neurosci. 2006, 7,
921.
,
8. Orio, P.; Rojas, P.; Ferreira, G.; Latorre, R. News Physiol. Sci. 2002, 17, 156.
9. Gribkoff, V. K.; Starrett, J. E., Jr; Dworetzky, S. I.; Hewawasam, P.; Boissard, C. G.
J. R.; Huston, K.; Johnson, G.; Krishman, B. S.; Kinney, G. G.; Lombardo, L. A.;
Meanwell, N. A.; Molinoff, P. B.; Myers, R. A.; Moon, S. L.; Ortiz, A.; Pajor, L.;
Pieschl, R. L.; Post-Munson, D. J.; Signor, L. J.; Srinivas, N.; Taber, M. T.; Thalody,
G.; Trojnacki, J. T.; Wiener, H.; Yeleswarm, K.; Yeola, S. W. Nat. Med. 2001, 7,
471.
10. Nardi, A.; Olesen, S.-P. Curr. Med. Chem. 2008, 15, 1126.
11. Olesen, S. P.; Munch, E.; Moldt, P.; Drejer, J. Eur. J. Pharmacol. 1994, 251, 53.
12. Coghlan, M. J.; Carroll, W. A.; Gopalakrishnan, M. J. Med. Chem. 2001, 44, 1627.
13. Wulff, H.; Zhorov, B. S. Chem. Rev. 2008, 108, 1744.
r
deposition number: CCDC 705340.
26. In the calculation of DHAA oxime, the energy difference of E and Z geometries
is 5.0 kcal/mol, and the out-of-plane angle of the oxime nitrogen atom is
decreased, probably because of the reduction of the steric repulsion between
the oxime moiety and the aromatic moiety; dihedral angle \C6C7C8C9: E-
isomer (15.0°) and Z-isomer (27.1°).
27. Finkel, A.; Wittel, A.; Yang, N.; Handran, S.; Hughes, J.; Costantin, J. J. Biomol.
Screen. 2006, 11, 488.
28. John, V. H.; Dale, T. J.; Hollands, E. C.; Chen, M. X.; Partington, L.; Downie, D. L.;
Meadows, H. J.; Trezise, D. J. J. Biomol. Screen. 2007, 12, 50.