Angewandte
Chemie
tation is also characteristic of Whiteside's novel micromachined
model of a Borromean link.
1997, 109, 1365 – 1367; Angew. Chem. Int. Ed. Engl. 1997, 36,
1308 – 1310.
[21] a) N. Belfrekh, C. Dietrich-Buckecker, J.-P. Sauvage, Inorg.
Chem. 2000, 39, 5169 – 5172; b) A. G. Fallis, M. A. Heuft, Angew.
Chem. 2002, 114, 4702 – 4705; Angew. Chem. Int. Ed. 2002, 41,
4520 – 4523.
[22] P. B. Sullivan, J. M. Calvert, T. J. Meyer, Inorg. Chem. 1980, 19,
1404 – 1407.
[7] a) N. C. Seeman, Angew. Chem. 1998, 110, 3408 – 3428; Angew.
Chem. Int. Ed. 1998, 37, 3220 – 3238; b) C. Mao, W. Sun, N. C.
Seeman, Nature 1997, 386, 137 – 138; c) H. Wu, S. Brittain, J.
Anderson, B. Grzybowski, S. Whitesides, G. M. Whitesides, J.
Am. Chem. Soc. 2000, 122, 12691 – 12699.
[8] These representations exemplify but do not limit the number of
ways this topology can be visually appreciated or structurally
realized; however it is through the connections between these
representations and the designed molecular targets that we
enrich our conceptualization of molecular structure and envision
retrosyntheses. For an example of how this has been interpreted
in crystal engineering, see: L. Carlucci, G. Ciani, D. M.
Proserpio, Cryst. Eng. Comm. 2003, 5, 269 – 279.
[23] U. S. Schubert, J. L. Kersten, A. E. Pemp, C. D. Eisenbach, G. R.
Newkome, Eur. J. Org. Chem. 1998, 2573 – 2581.
[24] Crystal-structure analysis of 1: crystals from acetone/Et2O;
¯
C204H232F24N16O24P4Ru2, Mr = 4074.0; triclinic, space group P1,
a = 14.8913(6), b = 15.6077(7), c = 24.010(1) , a = 98.044(2),
b = 90.089(2), g = 90.936(2)8, V= 5524.6(4) 3, Z = 1, 1 =
1.224 gcmÀ3
,
T= À 1138C, crystal dimensions: 0.20 0.25
0.30 mm, Nonius Kappa CCD area detector diffractometer,
graphite-monochromated MoKa radiation, l = 0.71073 , m =
0.249 mmÀ1, 2qmax = 558, 62117 total reflections, 18576 symme-
try-independent reflections, Rint = 0.072, 11249 reflections with
I > 2s(I). Data reduction performed with HKL Denzo and
Scalepack;[25] absorption correction applied.[26] The structure was
solved by using the Patterson and Fourier expansion routines of
DIRDIF94.[27] The SQUEEZE routine[28] of the program
PLATON[29] was employed to omit the contribution to the
reflection data from the highly disordered solvent molecules,
estimated to be six acetone molecules per asymmetric unit. This
significantly improved the refinement results. The six CH2
[9] C. R. Woods, M. Benaglia, S. Toyota, K. Hardcastle, J. S. Siegel,
Angew. Chem. 2001, 113, 771 – 773; Angew. Chem. Int. Ed. 2001,
40, 749 – 751.
[10] a) O. Safarowsky, M. Nieger, R. Fröhlich, F. Vögtle, Angew.
Chem. 2000, 112, 1699 – 1701; Angew. Chem. Int. Ed. 2000, 39,
1616 – 1618; b) G. Rapenne, C. Dietrich-Buchecker, J.-P. Sauv-
age, J. Am. Chem. Soc. 1999, 121, 994 – 1001; c) G. Schill, R.
Henschel, J. Boeckmann, Justus Liebigs Ann. Chem. 1974, 709 –
733; d) H. Adams, E. Ashworth, G. A. Breault, C. A. Hunter,
P. C. Mayers, Nature 2001, 411, 763.
[11] M. Benaglia, F. Ponzini, C. R. Woods, J. S. Siegel, Org. Lett. 2001,
3, 967 – 969.
À
groups of the hexamethylene chain and one PF6 anion are
[12] a) G. S. Hanan, D. Volkmer, U. S. Schubert, J. M. Lehn, G.
Baum, D. Fenske, Angew. Chem. 1997, 109, 1929 – 1931; Angew.
Chem. Int. Ed. Engl. 1997, 36, 1842 – 1844; b) S. Toyota, C. R.
Woods, M. Benaglia, R. Haldimann, K. Warnmark, K. Hardcas-
tle, J. S. Siegel, Angew. Chem. 2001, 113, 773 – 776; Angew.
Chem. Int. Ed. 2001, 40, 751 – 754.
[13] For a review on template-directed approaches, see: a) Breault,
C. A. Hunter, P. C. Mayers, Tetrahedron 1999, 55, 5265 – 5293;
b) S. Anderson, H. L. Anderson, J. K. M. Sanders, Acc. Chem.
Res. 1993, 26, 469 – 475; c) T. J. Hubin, D. H. Busch, Coord.
Chem. Rev. 2000, 200, 5 – 52; d) F. Diederich, P. J. Stang,
Templated Organic Synthesis, Wiley-VCH, Weinheim, 2000,
p. 410.
disordered and two conformations were modelled for each. The
structure was refined on F2 by full-matrix least-squares methods
using SHELXL97.[30] The H atoms were placed in geometrically
calculated positions and were allowed to ride on their parent
atom. The refinement of 1136 parameters using 18576 reflec-
tions and 739 restraints gave R(F) (I > 2s(I) data) = 0.103,
Rw(F2) (all data) = 0.306, goodness of fit on F2 = 1.040, D1max
=
2.27 eÀ3. CCDC-216666 contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
the Cambridge Crystallographic Data Centre, 12, Union Road,
Cambridge CB21EZ, UK; fax: (+ 44)1223-336-033; or deposit@
ccdc.cam.ac.uk).
[25] Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307 –
326.
[14] a) D. Parker in Macrocycle Synthesis: A Practical Approach
(Ed.: C. J. Moody, L. M. Harwood), Oxford University, Oxford,
1996; b) E. C. Constable, Coordination Chemistry of Macro-
cyclic Compounds, Oxford University, Oxford, 1999.
[15] M. Schmittel, A. Ganz, D. Fenske, Org. Lett. 2002, 4, 2289 – 2292.
[16] S.-H. Chiu, A. R. Pease, J. F. Stoddart, A. J. P. White, D. J.
Williams, Angew. Chem. 2002, 114, 280 – 284; Angew. Chem. Int.
Ed. 2002, 41, 270 – 274.
[17] a) M. Schmittel, A. Ganz, Synlett 1997, 710 – 712; b) U. Leh-
mann, A. D. Schlüter, Eur. J. Org. Chem., 2000, 3483 – 3487;
c) O. Henze, D. Lentz, A. D. Schlüter, Chem. Eur. J. 2000, 6,
2362 – 2367; d) G. R. Newkome, H.-W. Lee, J. Am. Chem. Soc.
1983, 105, 5956 – 5957; e) T. W. Bell, F. Albert, J. Am. Chem. Soc.
1986, 108, 8109 – 8111.
[26] R. H. Blessing, Acta Crystallogr. Sect. A 1995, 51, 33.
[27] P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, R.
de Gelder, R. Israel, J. M. M. Smits, DIRDIF94: The DIRDIF
program system, Technical Report of the Crystallography
Laboratory, University of Nijmegen, The Netherlands, 1994.
[28] P. van der Sluis, A. L. Spek, Acta Crystallogr. Sect. A 1990, 46,
194 – 201.
[29] A. L. Spek, PLATON, Program for the Analysis of Molecular
Geometry, University of Utrecht, The Netherlands, 2003.
[30] G. M. Sheldrick, SHELXL97, Program for the Refinement of
Crystal Structures, University of Göttingen, Germany, 1997.
[31] Note added in Proof: An example of a related topological
structure can be found in: O. V. Dolomanov, A. J. Blake, N. R.
Champness, M. Schröder, C. Wilson, Chem. Commun. 2003,
682 – 683.
[18] J. C. Loren, J. S. Siegel, Angew. Chem. 2001, 113, 776 – 779;
Angew. Chem. Int. Ed. 2001, 40, 754 – 757.
[19] U. S. Schubert, C. Eschbaumer, P. Andres, H. Hofmeier, C. H.
Weidl, E. Herdtweck, E. Dulkeith, A. Morteani, N. E. Hecker, J.
Feldmann, Synth. Met. 2001, 121, 1249 – 1252.
[20] a) By optimizing the arm length, the mixture of catenane and
“figure-eight” products can be controlled (J. Loren, P. Gantzel,
J. S. Siegel, unpublished results); b) the length and flexibility of
the arms has been noted as a crucial factor in a related RCM-
based synthesis of catenanes; see: a) M. Weck, B. Mohr, J. P.
Sauvage, R. H. Grubbs, J. Org. Chem. 1999, 64, 5463 – 5471; b) B.
Mohr, M. Weck, J. P. Sauvage, R. H. Grubbs, Angew. Chem.
Angew. Chem. Int. Ed. 2003, 42, 5702 –5705
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5705