ACS Catalysis
Page 4 of 6
Based on our mechanistic findings, we propose the rutheniꢀ
Notes
1
2
um(II)ꢀcatalyzed C–H nitrogenation to commence by a facile
The authors declare no competing financial interest.
BIESꢀtype27 C–H ruthenation by the cationic ruthenium(II)
ACKNOWLEDGMENT
3
monocarboxylate complex 9 (Scheme 5). Hence, the
Cu(OAc)2 serves as an effective additive for the formation of
the cationic ruthenium(II) carboxylate catalyst 9. The thusꢀ
formed cyclometalated intermediate 10 is subsequently coorꢀ
dinated by the imidating reagent 2. Thereafter, the N–O cleavꢀ
age delivers the cationic complex 11, which finally regenerꢀ
ates the catalytically active species 9, thereby liberating the
desired product 3. While the exact working mode of the N–O
cleavage step awaits more detailed analysis, an oxidative
addition6j pathway represents a viable alternative to an isohypꢀ
sic transformation.
4
5
6
7
8
9
Support by the European Research Council under the European
Community’s Seventh Framework Program (FP7 2007–
2013)/ERC Grant agreement no. 307535, DFG (SPP 1807) and
the DAAD (fellowship to K.R.) is gratefully acknowledged.
REFERENCES
(1) (a) Cheng, J.; Kamiya, K.; Kodama, I. Cardiovasc. Drug Rev.
2001, 19, 152ꢀ160. (b) Candeias, N. R.; Branco, L.ꢀC.; Gois, P. M. P.;
Fonso, C. A. M. A.; Trindade, A.ꢀF. Chem. Rev. 2009, 109, 2703ꢀ
2732.
(2) Larock, R.ꢀC. Comprehensive Organic Transformations, Wileyꢀ
VCH, Weinheim, 1999.
(3) (a) Ricci, A. Amino Group Chemistry, WileyꢀVCH, Weinheim,
2008. (b) Ricci, A. Modern Amination Methods, WileyꢀVCH, Weinꢀ
heim, 2007.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Scheme 5. Proposed Catalytic Cycle
(4) Representative recent reviews on C–H activation: (a) Kim, J.ꢀK.;
Shin, K.; Chang, S. Top. Organomet. Chem. 2016, 55, 29ꢀ51. (b)
Moselage, M.; Li, J.; Ackermann, L. ACS Catal. 2016, 6, 498ꢀ525. (c)
Song, G.; Li, X. Acc. Chem. Res. 2015, 48, 1007ꢀ1020. (d) Kuhl, N.;
Schroeder, N.; Glorius, F. Adv. Synth. Catal. 2014, 356, 1443ꢀ1460.
(e) Girard, S, ꢀA.; Knauber, T.; Li, C.ꢀJ. Angew. Chem. Int. Ed. 2014,
53, 74ꢀ100. (f) Nakamura, E.; Hatakeyama, T.; Ito, S.; Ishizuka, K.;
Ilies, L.; Nakamura, M. Org. React. 2014, 83, 1ꢀ209. (g) Rouquet, G.;
Chatani, N. Angew. Chem. Int. Ed. 2013, 52, 11726ꢀ11743. (h) Arockꢀ
iam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879ꢀ
5918. (i) Satoh, T.; Miura, M. Chem. Eur. J. 2010, 16, 11212ꢀ11222.
(j) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147ꢀ1169.
(k) Giri, R.; Shi, B.ꢀF.; Engle, K.ꢀM.; Maugel, N.; Yu, J.ꢀQ. Chem.
Soc. Rev. 2009, 38, 3242ꢀ3272. (l) Ackermann, L.; Vicente, R.;
Kapdi, A. Angew. Chem. Int. Ed. 2009, 48, 9792ꢀ9826. (m) Bergman,
R, G. Nature 2007, 446, 391ꢀ393, and references cited therein.
(5) (a) Surry, D.ꢀS.; Buchwald, S. L. Chem. Sci. 2011, 2, 27ꢀ50. (b)
Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534ꢀ1544.
(6) For representative examples see: (a) Hermann, G.ꢀN.; Becker, O.;
Bolm, C. Angew. Chem. Int. Ed. 2016, 55, 3781ꢀ3784. (b) Park, J.;
Chang, S. Angew. Chem. Int. Ed. 2015, 14103ꢀ14107. (c) Liang, Y.;
Liang, Y.ꢀF.; Tang, C.; Yuan, Y.; Jiao, N. Chem. Eur. J. 2015, 21,
16395ꢀ16399 (d) Mei, R., Loup, J.; Ackermann, L. ACS Catal. 2016,
6, 793ꢀ797. (e) Hwang, H.; Kim, J.; Jeong, J.; Chang, S.; J. Am.
Chem. Soc. 2014, 136, 10770ꢀ10776. (f) Park, S.ꢀH., Kwak, J.; Shin,
K.; Ryu, J.; Park, Y.; Chang, S. J. Am. Chem. Soc. 2014, 136, 2492ꢀ
2502. (g) Kim, H.; Ajitha, M.ꢀJ.; Lee, Y.; Ryu, J.; Kim, J.; Lee, J.;
Jung, Y.; Chang, S. J. Am. Chem. Soc. 2014, 136, 1132ꢀ1140. (h)
Gandeepan, P.; Parthasarthy, K.; Cheng, C.ꢀH. J. Am. Chem. Soc.
2010, 132, 8569ꢀ8571. (i) Shin, K.; Baek, Y.; Chang, S. Angew.
Chem. Int. Ed. 2013, 52, 8031ꢀ8036. (j) Yu, S.; Wan, B.; Li, X. Org.
Lett. 2013, 15, 3706ꢀ3709. (k) Kwak, J.; Ohk, Y.; Jung, Y.; Chang, S.
J. Am. Chem. Soc. 2012, 134, 17778ꢀ17788. (l) Ryu, J.; Shin, K.;
Park, S.ꢀH.; Kim, J.ꢀY.; Chang, S. Angew. Chem. Int. Ed. 2012, 51,
9904ꢀ9908. (m) Kim, J.ꢀY.; Park, S.ꢀH.; Ryu, J.; Cho, S.ꢀH.; Kim, S.ꢀ
H.; Chang, S. J. Am. Chem. Soc. 2012, 134, 9110ꢀ9113. (n)
Grohmann, C.; Wang, H.; Glorius, F. Org. Lett. 2012, 14, 656ꢀ659.
(o) Ng, K.ꢀH.; Zhou, Z.; Wu, W.ꢀY. Org. Lett. 2012, 14, 272ꢀ275. (p)
Gandeepan, P.; Hung, C.ꢀH.; Cheng, C.ꢀH. Chem. Commun. 2012, 48,
9379ꢀ9381. (q) Yoo, E.ꢀJ.; Ma, S.; Mei, T.ꢀS.; Chan, K, S.ꢀL.; Yu, J. ꢀ
Q. J. Am. Chem. Soc. 2011, 133, 7652–7656. (r) Ng, K.ꢀH.; Zhou, Z.;
Yu, W.ꢀY. Org. Lett. 2011, 14, 272ꢀ276. (s) Ng, K.ꢀH.; Chan, A. S.ꢀ
C.; Yu, Y.ꢀW. J. Am. Chem. Soc. 2010, 132, 12862ꢀ12866, and referꢀ
ences cited therein.
In summary, we have reported on the first azideꢀfree rutheꢀ
nium(II)ꢀcatalyzed C–H amidation by weakly coordinating
ketone assistance. The synthetic utility of the C–H activation
protocol was reflected by giving expedient access to synthetiꢀ
cally useful primary aminophenones, and enabling stepꢀ
economical late stage diversifications. The operationally simꢀ
ple protocol featured high catalytic efficacy and excellent
functional group tolerance, while detailed mechanistic studies
were indicative of a BIESꢀtype27 C–H ruthenation.
ASSOCIATED CONTENT
Supporting Information
Experimental procedures, characterization data, 1H and 13C NMRꢀ
spectra for compounds.
(7) (a) Zhang, F.; Spring, D.ꢀR. Chem. Soc. Rev. 2014, 6906ꢀ6919. (b)
Rousseau, G.; Breit, B. Angew. Chem. Int. Ed. 2011, 50, 2450ꢀ2494.
(8) For reviews on rutheniumꢀcatalyzed nitrognations, see: (a) Dana,
S.; Yadav, M. R.; Sahoo, A. K. Top. Organomet. Chem. 2016, 55,
189ꢀ215. (b) Louillat, M.ꢀL.; Patureau, F.ꢀW. Chem. Soc. Rev. 2014,
AUTHOR INFORMATION
Corresponding Author
* E-mail: Lutz.Ackermann@chemie.uni-goettingen.de
ACS Paragon Plus Environment