ACS Energy Letters
Letter
(14) Zhao, S.; Yin, H.; Du, L.; He, L.; Zhao, K.; Chang, L.; Yin, G.;
Zhao, H.; Liu, S.; Tang, Z. Carbonized nanoscale metal−organic
frameworks as high performance electrocatalyst for oxygen reduction
reaction. ACS Nano 2014, 8 (12), 12660−12668.
(15) Qian, Y.; Cavanaugh, J.; Khan, I. A.; Wang, X.; Peng, Y.; Hu, Z.;
Wang, Y.; Zhao, D. Fe/Fe3C/N-Doped Carbon Materials from Metal−
Organic Framework Composites as Highly Efficient Oxygen Reduction
Reaction Electrocatalysts. ChemPlusChem 2016, 81 (8), 718−723.
(16) Zhao, D.; Shui, J. L.; Grabstanowicz, L. R.; Chen, C.; Commet, S.
M.; Xu, T.; Lu, J.; Liu, D. J. Highly Efficient Non-Precious Metal
Electrocatalysts Prepared from One-Pot Synthesized Zeolitic Imidazo-
late Frameworks. Adv. Mater. 2014, 26 (7), 1093−1097.
(17) Wang, X.; Zhang, H.; Lin, H.; Gupta, S.; Wang, C.; Tao, Z.; Fu,
H.; Wang, T.; Zheng, J.; Wu, G.; et al. Directly converting Fe-doped
metal−organic frameworks into highly active and stable Fe-NC
catalysts for oxygen reduction in acid. Nano Energy 2016, 25, 110−119.
(18) Zhang, C.; Wang, Y. C.; An, B.; Huang, R.; Wang, C.; Zhou, Z.;
Lin, W. Networking pyrolyzed zeolitic imidazolate frameworks by
carbon nanotubes improves conductivity and enhances oxygen-
reduction performance in polymer-electrolyte-membrane fuel cells.
Adv. Mater. 2017, 29 (4), 1604556.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by U.S. Department of Energy, Fuel
Cell Technologies Office through Office of Energy Efficiency
and Renewable Energy. The works performed at Argonne
National Laboratory’s Center for Nanoscale Materials, a U.S.
Department of Energy Office of Science User Facility, is
supported by Office of Science, U.S. Department of Energy
under Contract DE-AC02-06CH11357. Authors thank Pine
Research Instrumentation for providing the alkaline resistant
electrochemical cell for this experiment. The views and opinions
of the authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof;
neither the United States Government nor any agency thereof,
nor any of their employees, makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the
accuracy, completeness, nor usefulness of any information,
apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights.
(19) Morozan, A.; Jaouen, F. Metal organic frameworks for
electrochemical applications. Energy Environ. Sci. 2012, 5 (11),
9269−9290.
̂
́
(20) Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R.; Uribe-
Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional
chemical and thermal stability of zeolitic imidazolate frameworks. Proc.
Natl. Acad. Sci. U. S. A. 2006, 103 (27), 10186−10191.
REFERENCES
■
(1) Jacobson, M.; Colella, W.; Golden, D. Cleaning the air and
improving health with hydrogen fuel-cell vehicles. Science 2005, 308
(5730), 1901−1905.
(21) Tan, J. C.; Bennett, T. D.; Cheetham, A. K. Chemical structure,
network topology, and porosity effects on the mechanical properties of
Zeolitic Imidazolate Frameworks. Proc. Natl. Acad. Sci. U. S. A. 2010,
107 (22), 9938−9943.
(22) Armel, V.; Hindocha, S.; Salles, F.; Bennett, S.; Jones, D.; Jaouen,
F. Structural descriptors of zeolitic−imidazolate frameworks are keys to
the activity of Fe−N−C catalysts. J. Am. Chem. Soc. 2017, 139 (1),
453−464.
(23) Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M.-T.; Mineva, T.;
Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for
oxygen reduction in iron-and nitrogen-doped graphene materials. Nat.
Mater. 2015, 14 (9), 937.
(24) Hayashi, H.; Cote, A. P.; Furukawa, H.; O’Keeffe, M.; Yaghi, O.
M. Zeolite A imidazolate frameworks. Nat. Mater. 2007, 6 (7), 501.
(25) Cao, S.; Bennett, T. D.; Keen, D. A.; Goodwin, A. L.; Cheetham,
A. K. Amorphization of the prototypical zeolitic imidazolate framework
ZIF-8 by ball-milling. Chem. Commun. 2012, 48 (63), 7805−7807.
(26) Bennett, T. D.; Cao, S.; Tan, J. C.; Keen, D. A.; Bithell, E. G.;
Beldon, P. J.; Friscic, T.; Cheetham, A. K. Facile mechanosynthesis of
amorphous zeolitic imidazolate frameworks. J. Am. Chem. Soc. 2011,
133 (37), 14546−14549.
(2) Das, V.; Padmanaban, S.; Venkitusamy, K.; Selvamuthukumaran,
R.; Blaabjerg, F.; Siano, P. Recent advances and challenges of fuel cell
based power system architectures and control−A review. Renewable
Sustainable Energy Rev. 2017, 73, 10−18.
(3) Berger, D. J. Fuel cells and precious-metal catalysts. Science 1999,
286 (5437), 49.
(4) Debe, M. K. Electrocatalyst approaches and challenges for
automotive fuel cells. Nature 2012, 486 (7401), 43−51.
(5) Jasinski, R. A new fuel cell cathode catalyst. Nature 1964, 201
(4925), 1212−1213.
̀
(6) Proietti, E.; Jaouen, F.; Lefevre, M.; Larouche, N.; Tian, J.;
Herranz, J.; Dodelet, J.-P. Iron-based cathode catalyst with enhanced
power density in polymer electrolyte membrane fuel cells. Nat.
Commun. 2011, 2, 416.
(7) Shui, J.; Chen, C.; Grabstanowicz, L.; Zhao, D.; Liu, D.-J. Highly
efficient nonprecious metal catalyst prepared with metal−organic
framework in a continuous carbon nanofibrous network. Proc. Natl.
Acad. Sci. U. S. A. 2015, 112 (34), 10629−10634.
(8) Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M.-T.; Mineva, T.;
Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for
oxygen reduction in iron-and nitrogen-doped graphene materials. Nat.
Mater. 2015, 14 (9), 937−942.
(9) Chung, H. T.; Cullen, D. A.; Higgins, D.; Sneed, B. T.; Holby, E.
F.; More, K. L.; Zelenay, P. Direct atomic-level insight into the active
sites of a high-performance PGM-free ORR catalyst. Science 2017, 357
(6350), 479−484.
(10) Li, J.; Ghoshal, S.; Liang, W.; Sougrati, M.-T.; Jaouen, F.; Halevi,
B.; McKinney, S.; McCool, G.; Ma, C.; Yuan, X.; et al. Structural and
mechanistic basis for the high activity of Fe−N−C catalysts toward
oxygen reduction. Energy Environ. Sci. 2016, 9 (7), 2418−2432.
(11) Ma, S.; Goenaga, G. A.; Call, A. V.; Liu, D. J. Cobalt imidazolate
framework as precursor for oxygen reduction reaction electrocatalysts.
Chem. - Eur. J. 2011, 17 (7), 2063−2067.
(12) Barkholtz, H. M.; Liu, D.-J. Advancements in rationally designed
PGM-free fuel cell catalysts derived from metal−organic frameworks.
Mater. Horiz. 2017, 4 (1), 20−37.
(13) Zhao, D.; Shui, J.-L.; Chen, C.; Chen, X.; Reprogle, B. M.; Wang,
D.; Liu, D.-J. Iron imidazolate framework as precursor for electro-
catalysts in polymer electrolyte membrane fuel cells. Chem. Sci. 2012, 3
(11), 3200−3205.
(27) Wu, G.; Mack, N. H.; Gao, W.; Ma, S.; Zhong, R.; Han, J.;
Baldwin, J. K.; Zelenay, P. Nitrogen-doped graphene-rich catalysts
derived from heteroatom polymers for oxygen reduction in nonaqueous
lithium−O2 battery cathodes. ACS Nano 2012, 6 (11), 9764−9776.
̀
(28) Kramm, U. I.; Herranz, J.; Larouche, N.; Arruda, T. M.; Lefevre,
M.; Jaouen, F.; Bogdanoff, P.; Fiechter, S.; Abs-Wurmbach, I.;
Mukerjee, S.; et al. Structure of the catalytic sites in Fe/N/C-catalysts
for O2-reduction in PEM fuel cells. Phys. Chem. Chem. Phys. 2012, 14
(33), 11673−11688.
(29) Kundu, S.; Nagaiah, T. C.; Xia, W.; Wang, Y.; Dommele, S. V.;
Bitter, J. H.; Santa, M.; Grundmeier, G.; Bron, M.; Schuhmann, W.;
et al. Electrocatalytic activity and stability of nitrogen-containing
carbon nanotubes in the oxygen reduction reaction. J. Phys. Chem. C
2009, 113 (32), 14302−14310.
(30) Rao, C. V.; Cabrera, C. R.; Ishikawa, Y. In search of the active site
in nitrogen-doped carbon nanotube electrodes for the oxygen reduction
reaction. J. Phys. Chem. Lett. 2010, 1 (18), 2622−2627.
(31) Cui, X.; Yang, S.; Yan, X.; Leng, J.; Shuang, S.; Ajayan, P. M.;
Zhang, Z. Pyridinic-nitrogen-dominated graphene aerogels with Fe-N-
2506
ACS Energy Lett. 2019, 4, 2500−2507