H. Jadhav et al. / Tetrahedron Letters 53 (2012) 983–985
985
3. For some alternatives to HMF, see: (a) Mascal, M.; Nikitin, E. B. Angew. Chem.,
Int. Ed. 2008, 47, 7924–7926; (b) Kumari, N.; Olesen, J. K.; Pedersen, C. M.; Bols,
M. Eur. J. Org. Chem. 2011, 1266–1270.
4. Román-Leshkov, Y.; Barrett, C. J.; Liu, Z. Y.; Dumesic, J. A. Nature 2007, 447, 982.
5. Corma, A.; Iborra, S.; Velty, A. Chem. Rev. 2007, 107, 2411–2502.
6. Ståhlberg, T.; Rodriguez-Rodriguez, S.; Fristrup, P.; Riisager, A. Chem. Eur. J.
2011, 17, 1369–1378.
7. (a) Zhao, H.; Holladay, J. E.; Brown, H.; Zhang, Z. C. Science 2007, 316, 1597; (b)
Zhao, H.; Holladay, J.E.; Zhang, Z.C. US20080033187, 2008; Chem. Abstr. 2008,
148, 241411.
8. Zhang, Y.; Pidko, E. A.; Hensen, E. J. M. Chem. Eur. J. 2011, 17, 5210–5217.
9. For the direct synthesis of HMF from starch using chromium catalysis, see:
Chun, J.-A.; Lee, J.-W.; Yi, Y.-B.; Hong, S.-S.; Chung, C.-H. Starch/Stärke 2010, 62,
326–330.
Overall this work has led to two improvements in the synthesis
of HMF from glucose: in the acid-promoted dehydration we found
that an acidic zeolite, H-ZSM-5, catalyzed the reaction and led to a
45% isolated yield of HMF, which is among the highest yields ob-
tained when chromium salts are not added. Secondly, we found
that in the Cr-catalyzed reaction, imidazole-based ionic liquids
could be substituted with inexpensive and non-toxic tetrabutyl-
ammonium chloride to give yields of HMF of 50–55%. A combina-
tion of our two findings, which would avoid both the toxic solvent
and catalyst, has not yet been possible, but should be a future
direction of biomass conversion research.
10. For the synthesis of HMF from cellulose using
a chromium- containing
heteropolyacid, see: Zhao, S.; Cheng, M.; Li, J.; Tian, J.; Wang, X. Chem. Commun.
2011, 47, 2176–2178.
11. Jadhav, H.; Pedersen, C. M.; Sølling, T.; Bols, M. ChemSusChem 2011, 4, 1049–
1051.
General procedure
The solvent/ionic liquid was placed in a round-bottomed flask
12. Tong, X.; Li, Y. ChemSusChem 2010, 3, 350–355.
13. (a) Takahagi, A.; Ohara, M.; Nishimura, S.; Ebitani, K. Chem. Commun. 2009,
6276–6278; (b) Ohara, M.; Takahagi, A.; Nishimura, S.; Ebitani, K. Appl. Catal., A
2010, 383, 149–155.
14. Binder, J. B.; Raines, R. T. J. Am. Chem. Soc. 2009, 131, 1979–1985.
15. Taarning, E.; Osmundsen, C. M.; Yang, X.; Voss, B.; Andersen, S. I.; Christensen,
C. H. Energy Environ. Sci. 2011, 4, 793–804.
16. For a report on the hydration of xylose into furfural using zeolites, see: Lima, S.;
Antunes, M. M.; Fernandes, A.; Pillinger, M.; Ribeiro, M. F.; Valente, A. A. Appl.
Catal., A 2010, 388, 141–148.
17. Holm, M. S.; Saravanamurugan, S.; Taarning, E. Science 2010, 328, 602.
18. Moliner, M.; Roman-Leshkov, Y.; Davis, M. E. Proc. Natl. Acad. Sci. 2010, 107,
6164–6168.
19. Nikolla, E.; Roman-Leshkov, Y.; Moliner, M.; Davis, M. E. ACS Catal. 2011, 1,
408–410.
20. Argauer, R. J.; Landolt, G. R. G.B. Patent 1161974, 1969; Chem. Abstr. 1969, 71,
114760.
21. Dyer, A. An Introduction to Zeolite Molecular Sieves; John Wiley & Sons, 1988.
22. Chen, T.; Lin, L. Chin. J. Chem. 2010, 28, 1773–1776.
23. (a) Yuan, Z.; Xu, C.; Cheng, S.; Leitch, M. Carbohydr. Res. 2011, 346, 2019–2023;
(b) Cao, Q.; Guo, X.; Guan, J.; Mu, X.; Zhang, D. Appl. Catal., A: General 2011, 403,
98–103.
and heated to 80–90 °C to give a clear solution. D-Glucose was
added followed by the activated27 zeolite28 and the mixture was
stirred at 110 °C for the indicated time. The mixture was cooled
to 40 °C, H2O and EtOAc were added (10 mL each per 100 mg car-
bohydrate), and the mixture stirred for 30 min at 40 °C. The mix-
ture was filtered and the aqueous layer extracted with EtOAc
(3 Â 10 mL). The combined organic layers were washed with brine
and dried over anhydrous Na2SO4. After evaporation the residue
was subjected to flash chromatography on a SiO2 column using
petroleum ether as the eluent and eluting HMF with EtOAc. 1H
NMR (500 MHz, CDCl3) d 9.61 (s, 1H), 7.18 (d, J = 3.6 Hz, 1H), 6.56
(d, J = 3.6 Hz, 1H), 4.59 (s, 2H). 13C NMR (126 MHz, CDCl3) d
177.9, 156.3, 153.1, 121.9, 112.1, 36.7.
Acknowledgment
24. Significantly higher yields were obtained in [Bmim]Cl compared to [Emim]Cl
for the lanthanide-catalysed conversion of glucose into HMF, see: Ståhlberg, T.;
Sørensen, M. G.; Riisager, A. Green Chem. 2010, 12, 321–325.
25. Hu, S.; Zhang, Z.; Song, J.; Zhou, Y.; Buxing, H. Green Chem. 2009, 11, 1746–
1749.
26. Yang, F.; Liu, Q.; Yue, M.; Bai, X.; Du, Y. Chem. Commun. 2011, 47, 4469–4471.
27. Before use the zeolite was activated by heating at 120 °C for 1 h.
28. H-ZSM-5, Zeochem Zeolite PZ-2/100H 30 81 200.000.
We thank Forskningsrådet for Teknologi og Produktion for
financial support.
References and notes
1. Rostrup-Nielsen, J. R. Science 2005, 308, 1421–1422.
2. Pérez, S.; Samain, D. Adv. Carb. Chem. Biochem. 2010, 64C, 25–116.