2
982 Yang et al.
Asian J. Chem.
TABLE-3
REFERENCES
SURFACE ACIDIC GROUPS EVALUATED BY
BOEHM TITRATIONS AND PHOSPHORUS
CONTENT MEASURED BY XPS
1
.
Y. Roman-Leshkov, J.N. Chheda and J.A. Dumesic, Science, 312, 1933
2006).
(
Catalysts
AC-0.5-450 AC-1-350 AC-1-450 AC-1-550
2. H. Zhao, J.E. Holladay, H. Brown and Z.C. Zhang, Science, 316, 1597
(2007).
3. J.N. Chheda, Y. Roman-Leshkov and J.A. Dumesic, Green Chem., 9,
342 (2007).
4. Y. Roman-Leshkov and J.A. Dumesic, Top. Catal., 52, 297 (2009).
5. C. Li, Z. Zhang and Z.K. Zhao, Tetrahedron Lett., 50, 5403 (2009).
6. C. Li, Z.K. Zhao, H. Cai, A. Wang and T. Zhang, Biomass Bioenergy,
-4
a
Carboxylic (10 mol/g)
2.28
0
0
1.43
0
1.48
1.16
1.12
0
1.95
1.26
1.13
0.05
0.02
1.98
-
4
a
Lactonic (10 mol/g)
-
4
a
Phenolic (10 mol/g)
b
P content (wt.%)
1.03
a
Concentration of acid is determined by Boehm titration method;
b
Phosphorus content is measured by XPS method
00
3
5, 2013 (2011).
X. Tong, M. Li, N. Yan,Y. Ma, P.J. Dyson andY. Li, Catal. Today, 175,
24 (2011).
7
.
1
2.5
2.0
1.5
1.0
0.5
0.0
5
8
9
.
.
H. Xie, Z.K. Zhao and Q. Wang, Chem. Sus. Chem., 5, 901 (2012).
Z. Zhang, B. Liu and Z. Zhao, Carbohydr. Polym., 88, 891 (2012).
80
60
40
20
0
10. M. Tan, L. Zhao and Y. Zhang, Biomass Bioenergy, 35, 1367 (2011).
1
1
1
1
1
1
1. A.J. Crisci, M.H. Tucker, J.A. Dumesic and S.L. Scott, Top. Catal., 53,
185 (2010).
2. A.J. Crisci, M.H. Tucker, M.-Y. Lee, S.G. Jang, J.A. Dumesic and S.L.
Scott, ACS Catal., 1, 719 (2011).
3. M.H. Tucker, A.J. Crisci, B.N. Wigington, N. Phadke, R. Alamillo, J.
Zhang, S.L. Scott and J.A. Dumesic, ACS Catal., 2, 1865 (2012).
4. A.S. Amarasekara, L.D. Williams and C.C. Ebede, Carbohydr. Res.,
1
3
43, 3021 (2008).
5. S. Hu, Z. Zhang, J. Song, Y. Zhou and B. Han, Green Chem., 11, 1746
2009).
(
6. A. Villa, M. Schiavoni, P.F. Fulvio, S.M. Mahurin, S. Dai, R.T. Mayes,
G.M. Veith and L. Prati, J. Energy Chem., 22, 305 (2013).
17. K.D.O. Vigier, A. Benguerba, J. Barrault and F. Jerome, Green Chem.,
14, 285 (2012).
AC-1-350
AC-1-450
AC-1-550
AC-0.5-550
Sample
18. M. Bicker, J. Hirth and H. Vogel, Green Chem., 5, 280 (2003).
1
2
9. W. Liu and J. Holladay, Catal. Today, 200, 106 (2013).
0. Y.-S. Qu, Y.-L. Song, C.-P. Huang, J. Zhang and B.-H. Chen, Ind. Eng.
Chem. Res., 51, 13008 (2012).
1. S. Lima, M.M. Antunes, M. Pillinger and A.A. Valente, Chem. Cat.
Chem., 3, 1686 (2011).
2. Y. Zhang, E.A. Pidko and E.J.M. Hensen, Chem. Eur. J., 17, 5281 (2011).
3. F. Tao, H. Song and L. Chou, RSC Adv., 1, 672 (2011).
4. R. Kourieh, V. Rakic, S. Bennici and A. Auroux, Catal. Commun., 30,
5 (2013).
Fig. 3. Fructose conversion, 5-hydroxymethylfurfural yield and selectivity
as a function of the phosphorous content: ( ) the fructose conver-
sion; ( ) the 5-HMF selectivity; ( ) the 5-hydroxymethylfurfural
yield; ( ) the phosphorous content. The phosphorous contents of
the samples were determined by XPS method
2
2
2
2
Brønsted acidic catalyst can catalyze dehydration of fructose
to form 5-hydroxymethylfurfural. In addition, the strength of
Brønsted acid sites has a remarkable effect on the fructose
conversion and the 5-hydroxymethylfurfural selectivity. This
result also shows that the P content is not linear with the
2
2
5. J.S. Kruger, V. Choudhary, V. Nikolakis and D.G. Vlachos, ACS Catal.,
3
, 1279 (2013).
6. R. Bermejo-Deval, R. Gounder and M.E. Davis, ACS Catal., 2, 2705
2012).
27. C.M. Lew, N. Rajabbeigi and M. Tsapatsis, Micropor. Mesopor. Mater.,
53, 55 (2012).
(
5-hydroxymethylfurfural selectivity, but has good relation with
1
the fructose conversion.
2
2
3
3
3
8. H. Jadhav, E. Taarning, C.M. Pedersen and M. Bols, Tetrahedron Lett.,
53, 983 (2012).
9. W. Daengprasert, P. Boonnoun, N. Laosiripojana, M. Goto and A.
Shotipruk, Ind. Eng. Chem. Res., 50, 7903 (2011).
0. X. Qi, H. Guo, L. Li and R.L. Smith Jr., Chem. Sus. Chem., 5, 2215
(2012).
Conclusion
In summary, a novel surface modified activated carbon,
phosphorylated activated carbon, was used to catalyze dehy-
dration of fructose to produce 5-hydroxymethylfurfural. The
samples exhibit a good activity for the dehydration of fructose
to 5-hydroxymethylfurfural in DMSO solvents, making them
potential substitutes for the mineral acid, with the advantages
of low-cost and easy separations. The fructose conversion is
mainly correlated with the phosphate group of the catalyst.
1. J. Wang, W. Xu, J. Ren, X. Liu, G. Lu and Y. Wang, Green Chem., 13,
2
678 (2011).
2. H. Guedidi, L. Reinert, J.-M. Leveque, Y. Soneda, N. Bellakhal and L.
Duclaux, Carbon, 54, 432 (2013).
33. C. Yao, Y. Shin, L.-Q. Wang, C.F. Windisch Jr., W.D. Samuels, B.W.
Arey, C. Wang, W.M. Risen and G.J. Exarhos, J. Phys. Chem. C, 111,
15141 (2007).
3
4. C.B. Rasrendra, J.N.M. Soetedjo, I.G.B.N. Makertihartha, S.Adisasmito
and H.J. Heeres, Top. Catal., 55, 543 (2012).
ACKNOWLEDGEMENTS
3
3
5. Y.-Y. Lee and K.C.W. Wu, Phys. Chem. Chem. Phys., 14, 13914 (2012).
6. A.M. Puziy, O.I. Poddubnaya, R.P. Socha, J. Gurgul and M. Wisniewski,
Carbon, 46, 2113 (2008).
This work was financially supported by the National
Natural Science Foundation of China (grant No. 31200445)
and the Natural Science Foundation of Jiangsu province (grant
No. BK2012416). This work was also financially supported
by the Priority Academic Program Development of Jiangsu
Higher Education Institutions (PAPD).
37. J. Bedia, R. Ruiz-Rosas, J. Rodriguez-Mirasol and T. Cordero, J. Catal.,
271, 33 (2010).