Please do not adjust margins
Journal of Materials Chemistry A
Page 4 of 6
COMMUNICATION
Journal Name
In the literature, the conversion of fructose to HMF was mostly
studied at high temperature of ~150oC.9 To lower the reaction
temperature, we studied temperature dependent catalytic activity
of H-TA-CMP-ASO3H (2 mol% SO3H to fructose). As shown in
Fig. 4a, while the H-TA-CMP-ASO3H showed good conversion
of fructose to HMF (91~92% yields after 5 h) at 120 and 140oC,
it maintained good catalytic activity (85% yield of HMF after 5
h) at 100oC. It is noteworthy that microporous organic polymers
with sulfonic groups have been recently developed as a solid
catalyst for fructose conversion to HMF, showing catalytic
turnover numbers (TONs) of 5.83 and 6.11 at 120 and 140oC.18
In comparison, the H-TA-CMP-ASO3H showed superior TONs
of 42.5 and 45.5 at 100 and 120oC, respectively. We think that
the excellent performance of H-TA-CMP-ASO3H is attributable
to its microporosity and thin hollow structure.19 Importantly, the
H-TA-CMP-ASO3H showed excellent recyclability in the five
successive catalytic reactions with 85, 84, 85, 83, and 82% yields
of HMF for the first, second, third, fourth, and fifth run,
respectively. (Fig. 4b) According to thermogravimetric analysis
(TGA), the H-TA-CMP and H-TA-CMP-ASO3H were stable up
to 247 and 205oC, respectively. (Figs. 4c and S3 in the ESI) SEM
and IR analysis showed that the H-TA-CMP-ASO3H recovered
after the fifth run maintained its original hollow structure and
aliphatic sulfonic acids. (Fig. 4d and S4 in the ESI)
7710-7720.
DOI: 10.1039/C8TA06273K
2
Reviews: (a) S. Das, P. Heasman, T. Ben and S. Qiu, Chem. Rev.
2017, 117, 1515-1563; (b) N. Chaoui, M. Trunk, R. Dawson, J.
Schmidt and A. Thomas, Chem. Soc. Rev. 2017, 46, 3302-3321; (c)
L. Tan and B. Tan, Chem. Soc. Rev. 2017, 46, 3322-3356; (d) Y.
Xu, S. Jin, H. Xu, A. Nagai and D. Jiang, Chem. Soc. Rev. 2013,
42, 8012-8031; (e) F. Vilela, K. Zhang and M. Antonietti, Energy
Environ. Sci. 2012, 5, 7819-7832; (f) R. Dawson, A. I. Cooper and
D. J. Adams, Prog. Poly. Sci. 2012, 37, 530-563; (g) N. B.
McKeown and P. M. Budd, Chem. Soc. Rev. 2006, 35, 675-683.
(a) X. Han, M. Xu, S. Yang, J. Qian and D. Hua, J. Mater. Chem.
3
A
2017,
H. J. Kim, Y. -J. Ko and S. U. Son, Chem. Commun. 2017, 53
8778-8781; (c) K. Thiel, R. Zehbe, J. Roeser, P. Strauch, S.
Enthaler and A. Thomas, Polym. Chem. 2013, , 1848-1856; (d)
H. Urakami, K. Zhang and F. Vilela, Chem. Commun. 2013, 49
2353-2355; (e) T. İslamoğlu, M. G. Rabbani and H. M. El-kaderi,
J. Mater. Chem. A 2013, , 10259-10266; (f) B. Kiskan and J.
Weber, ACS Macro Lett. 2012, , 37-40; (g) W. Lu, J. P. Sculley,
5, 5123-5128; (b) J. Choi, E. S. Kim, J. H. Ko, S. M. Lee,
,
4
,
1
1
D. Yuan, R. Krishna, Z. Wei and H. -C. Zhou, Angew. Chem. Int.
Ed. 2012, 51, 7480-7484; (h) P. A. Kerneghan, S. D. Halperin, D.
L. Bryce and K. E. Maly, Can. J. Chem. 2011, 89, 577-582; (i) H.
Lim and J. Y. Chang, Macromolecules 2010, 43, 6943-6945.
Reviews: (a) A. B. Lowe, Polymer 2014, 55, 5517-5549; (b) R.
Hoogenboom, Angew. Chem. Int. Ed. 2010, 49, 3415-3417.
J. Y. Jang, H. T. T. Duong, S. M. Lee, H. J. Kim, Y. -J. Ko, J. H.
Jeong, D. S. Lee, T. Thambi and S. U. Son, Chem. Commun. 2018,
54, 3652-3655.
4
5
In comparison, we prepared hollow aromatic sulfonic acids
(H-control-SO3H) as control materials by reaction of H-TA-
CMP with ClSO3H. (Experimental Section and Fig. S5 in the ESI)
As shown in Figs. 4b-c, the H-control-SO3H with aromatic SO3H
showed poor recyclability,20 poor thermal stability, and a gradual
desulfonation in IR analysis (Fig. S6 in the ESI), matching with
thermal instability of aromatic sulfonic acids in the literature.12
In conclusion, this work shows that defects can be enhanced
and utilized for functionalization of CMP materials. Versatile
defective terminal alkynes can be incorporated to CMP materials
by the Sonogashira coupling of 1,4-dibromo-2,5-
diethynybenzene. Aliphatic sulfonic acids can be easily
introduced into H-TA-CMPs by the thiol-yne click reaction of
terminal alkyne groups. The resultant H-TA-CMP-ASO3H
showed recyclable catalytic performance in fructose conversion
to HMF. We believe that more diverse functional groups can be
incorporated by the reaction of terminal alkynes of H-TA-CMP
with tailored functional reactants.
6
7
M. H. Kim, J. Choi, K. C. Ko, K. Cho, J. H. Park, S. M. Lee, H. J.
Kim, Y. -J. Ko, J. Y. Lee and S. U. Son, Chem. Commun. 2018,
54, 5134-5137.
Recent reviews: (a) S. Dissegna, K. Epp, W. R. Heinz, G. Kieslich
and R. A. Fischer, Adv. Mater. 2018, 10, 1704501; (b) J. Ren, M.
Ledwaba, N. M. Musyoka, H. W. Langmi, M. Mathe, S. Liao and
W. Pang, Coord. Chem. Rev. 2017, 349, 169-197; Recent
examples: (c) L. Yuan, M. Tian, J. Lan, X. Cao, X. Wang, Z. Chai,
J. K. Gibson and W. Shi, Chem. Commun. 2018, 54, 370-373; (d)
B. Peng, H. Zou, L. He, P. Wang, Z. Shi, L. Zhu, R. Wang and Z.
Zhang, CrystEngComm 2017, 19, 7088-7094.
8
9
(a) B. Kim, N. Park, S. M. Lee, H. J. Kim and S. U. Son, Polym.
Chem. 2015,
Lee, H. J. Kim and S. U. Son, Chem. Mater. 2012, 24, 3458-3463.
(a) B. Liu and Z. Zhang, ACS Catal. 2016, , 326-338; (b) B. R.
Caes, R. E. Teixeira, K. G. Knapp and R. T. Raines, ACS
Sustainable Chem. Eng. 2015, , 2591-2605; (c) M. Hara, Energy
Environ. Sci. 2010, , 601-607.
10 N. Park, Y. N. Lim, S. Y. Kang, S. M. Lee, H. J. Kim, Y. -J. Ko,
6, 7363-7367; (b) J. Chun, J. H. Park, J. Kim, S. M.
6
3
3
B. Y. Lee, H. -Y. Jang and S. U. Son, ACS Macro Lett. 2016, 5,
1322-1326.
11 C. Vogel, J. Meier-Haack, A. Taeger and D. Lehmann, Fuel Cells
2004, , 320-327.
12 M. Balakrishnan, E. R. Sacia and A. T. Bell, ChemSusChem 2014,
, 1078-1085.
4
Conflicts of interest
There are no conflicts to declare.
7
13 D. Wang and T. Michinobu, J. Polym. Sci., Part A: Polym. Chem.
2011, 49, 72-81.
Acknowledgements
14 W. Stöber, A. Fink and E. Bohn, J. Colloid Inter. Sci. 1968, 26
,
This work was supported by “Next Generation Carbon
Upcycling Project” (Project No. 2017M1A2A2042517) through
the National Research Foundation (NRF) funded by the Ministry
of Science and ICT, Republic of Korea.
62-69.
15 The quantitative yield (100%) was defined assuming complete and
nondefective networking.
16 For H-TA-CMPs, intensity ratios of the terminal alkyne peaks at
3295 cm-1 to vibration peaks at 1468 cm-1 were 0.76 (4 h), 0.63 (6
h), and 0.55 (12 h). In comparison, for CMP materials, intensity
ratios of the terminal alkyne peaks at 3296 cm-1 to vibration peaks
at 1484 cm-1 were 0.52 (4 h), 0.36 (6 h), and 0.27 (12 h).
17 Acid-based titration of H-TA-CMP-ASO3H with 0.10 M NaOH
confirmed the same amount of sulfonic acids in the materials.
Notes and references
1
(a) J. –X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell, H.
Niu, C. Dickinson, A. Y. Ganin, M. J.; Rosseinsky, Y. Z. Khimyak
and A. I. Cooper, Angew. Chem., Int. Ed. 2007, 46, 8574-8578; (b)
J. -X. Jiang, F. Su, A. Trewin, C. D. Wood, H. Niu, J. T. A. Jones,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins