energy triggered via an applied magnetic field. To achieve such
goals we are currently pursuing the isolation of high-energy
materials with controllable magnetic properties.
We thank the University of Ottawa, the Canada Foundation
for Innovation (CFI), FFCR and NSERC (Discovery and RTI
grants) for financial support.
Notes and References
z Crystal data for 1: C85
190
H N148Ni26O34, M = 5356.31, green block,
˚
monoclinic, P2
1
, a = 19.046(3), b =29.147(6), c = 23.518(4) A, a =
3
˚
9
2
0.001, b = 100.48(1)1, g = 90.001, V = 12838(4) A , Z = 2, T =
00(2) K, l = 0.71073 A, ymax = 21.971, 78 643 reflections collected of
= 0.0763 [based on I > 2s(I)],
˚
which 9914 were independent, R
wR = 0.2366 (based on F and all data), GOF on F = 1.041. CCDC
1
2
2
2
8
47307.
1
(a) K. E. Vostrikova, D. Luneau, W. Wernsdorfer, P. Rey and
M. Verdaguer, J. Am. Chem. Soc., 2000, 122, 718; (b) G. Schmid,
¨
M. Baumle, M. Geerkens, I. Heim, C. Osemann and T. Sawitowski,
Fig. 3 Temperature dependence of the magnetic susceptibility for
under an applied dc field of 1000 Oe. Inset: M vs. H/T plot showing
1
Chem. Soc. Rev., 1999, 28, 179; (c) O. M. Yaghi, M. O’Keeffe,
N. W. Ockwig, H. K. Chae, M. Eddaoudi and J. Kim, Nature, 2003,
423, 705; (d) G. E. Kostakis and A. K. Powell, Coord. Chem. Rev.,
non-saturation and non-superposition of the magnetization curves at
different temperatures.
2
(
009, 253, 2686; (e) M. Murrie, Chem. Soc. Rev., 2010, 39, 1986;
f) C. Papatriantafyllopoulou, E. Diamantopoulou, A. Terzis, N. Lalioti,
promote magnetic-orbital orthogonality due to sharp bridging
V. Tangoulis and S. P. Perlepes, Inorg. Chem. Commun., 2008, 11, 454.
(a) D. Gatteschi, A. Caneschi, L. Pardi and R. Sessoli, Science,
1994, 265, 1054; (b) T. C. Stamatatos, K. A. Abboud,
W. Wernsdorfer and G. Christou, Angew. Chem., Int. Ed., 2007,
5b,c,6b
angles.
ground state of 9 r S
Fig. 3, inset) shows non-saturation as well as non-superposition
The maximum value of wT indicates a large spin
2
T
r 10 for g = 2. The M vs. H/T plot
(
4
3
6, 884; (c) L. M. C. Beltran and J. R. Long, Acc. Chem. Res., 2005,
8, 325; (d) M. Murugesu, R. Clerac, W. Wernsdorfer, C. E. Anson
and A. K. Powell, Angew. Chem., Int. Ed., 2005, 44, 6678.
of the magnetization curves at low temperatures (2.5 K) and high
applied magnetic fields (up to 7 T). This indicates the presence of
low-lying excited states which significantly complicate the
calculations of the spin ground state for 1. Additionally, in
order to obtain a reasonable fit of the magnetic susceptibility,
all six different magnetic exchange pathways (Fig. S6, ESIw)
must be taken into consideration rendering the Hamiltonian
equation quite complicated. The value of M at 2.5 K and 7 T
´
3 (a) D. Foguet-Albiol, K. A. Abboud and G. Christou, Chem.
Commun., 2005, 4282; (b) N. Hoshino, A. M. Ako, A. K. Powell
and H. Oshio, Inorg. Chem., 2009, 48, 3396; (c) P. King,
W. Wernsdorfer, K. A. Abboud and G. Christou, Inorg. Chem.,
2004, 43, 7315; (d) D. J. Price, S. R. Batten, B. Moubaraki and
K. S. Murray, Chem. Commun., 2002, 762; (e) E. K. Brechin,
S. G. Harris, A. Harrison, S. Parsons, A. G. Whittaker and R. E. P.
Winpenny, Chem. Commun., 1997, 653; (f) J. C. Goodwin, S. J. Teat
and S. L. Heath, Angew. Chem., Int. Ed., 2004, 43, 4037;
(g) A. Ferguson, A. Parkin, J. Sanchez-Benitez, K. Kamenev,
W. Wernsdorfer and M. Murrie, Chem. Commun., 2007, 3473;
of 17.76 m
Moreover, the presence of two types of {Ni13} complexes
1A and 1B) further complicates the detailed analysis of the
B
is in good agreement with g E 2 and 9 r S r 10.
T
(
(h) E. Rather, J. T. Gatlin, P. G. Nixon, T. Tsukamoto, V. Kravtsov
exact spin ground state. Alternating current (ac) magnetic
measurements were performed on 1 in order to probe other
potential properties such as slow magnetic relaxation characteristic
of SMM behaviour. However, no out-of-phase, frequency-
dependent signal was detected even at low temperatures (down
to 2.5 K) indicating the absence of such SMM behaviour.
and D. W. Johnson, J. Am. Chem. Soc., 2005, 127, 3242;
(i) J. C. Goodwin, R. Sessoli, D. Gatteschi, W. Wernsdorfer,
A. K. Powell and S. L. Heath, J. Chem. Soc., Dalton Trans., 2000, 1835.
(a) C. J. Milios, A. Vinslava, P. A. Wood, S. Parsons,
W. Wernsdorfer, G. Christou, S. P. Perlepes and E. K. Brechin,
J. Am. Chem. Soc., 2007, 129, 2754; (b) S. Mukherjee, R. Bagai,
K. A. Abboud and G. Christou, Inorg. Chem., 2011, 50, 3849.
4
5
(a) A. Escuer and G. Aromı, Eur. J. Inorg. Chem., 2006, 4721;
´
In conclusion, an in-depth study of a novel, high-spin
II
Ni } cluster has been reported focusing on its unique
(b) Y. Z. Zhang, H. Y. Wei, F. Pan, Z. M. Wang, Z. D. Chen and
S. Gao, Angew. Chem., Int. Ed., 2005, 44, 5841; (c) A. M. Ako,
I. J. Hewitt, V. Mereacre, R. Clerac, W. Wernsdorfer, C. E. Anson
´
and A. K. Powell, Angew. Chem., Int. Ed., 2006, 45, 4926.
(a) Y. Z. Zhang, W. Wernsdorfer, F. Pan, Z. M. Wang and S. Gao,
Chem. Commun., 2006, 3302; (b) J. Ribas, A. Escuer, M. Monfort,
{
1
3
architectural features as well as magnetic properties. In recent
years, complexes with planar oxido/hydroxido-bridged core
structures have been investigated where the prediction of
ferromagnetic interactions in such systems was not possible.
We were able to alleviate this problem by promoting predo-
minantly EO azido bridges between metal centres thus leading
to dominant ferromagnetic interactions. To our knowledge,
this is the first transition metal complex containing a single
bridging mode, m -N , within the core as well as m-N and
6
7
R. Vicente, R. Corte
1999, 193–195, 1027.
(a) X. T. Wang, B. W. Wang, Z. M. Wang, W. Zhang and S. Gao,
Inorg. Chim. Acta, 2008, 361, 3895; (b) G. Aromı, S. Parsons,
´
s, L. Lezama and T. Rojo, Coord. Chem. Rev.,
´
W. Wernsdorfer, E. K. Brechin and E. J. L. McInnes, Chem.
Commun., 2005, 5038; (c) M. L. Tong, M. Monfort,
J. M. Clemente-Juan, X. M. Chen, X. H. Bu, M. Ohba and
S. Kitagawa, Chem. Commun., 2005, 233.
8 (a) G. S. Papaefstathiou, S. P. Perlepes, A. Escuer, R. Vincente,
M. Font-Bardia and X. Solans, Angew. Chem., Int. Ed., 2001,
40, 884; (b) A. K. Boudalis, Y. Sanakis, J. M. Clemente-Juan,
B. Donnadieu, V. Nastopoulos, A. Mari, Y. Coppel,
J.-P. Tuchagues and S. P. Perlepes, Chem.–Eur. J., 2008, 14, 2514;
3
3
3
ꢀ
3
II
m -N in the outer shell resulting in the highest N : Ni ratio
3
3
ꢀ
reported to date of 1.4 : 1. Complexes with such a high N3 to
metal ratio provide a route to novel high-energy materials, where
energy storage and release could potentially be controlled by
molecular architectures. Extension of this synthetic methodology
may provide new avenues for molecular nanoscale materials with
multiple applications. One of which could be the release of
(
c) C. Papatriantafyllopoulou, E. Diamantopoulou, A. Terzis,
V. Tangoulis, N. Lalioti and S. P. Perlepes, Polyhedron, 2009,
28, 1903.
This journal is c The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 1287–1289 1289