4656 J. Phys. Chem. A, Vol. 104, No. 19, 2000
Mart´ın et al.
counter electrode; saturated calomel electrode (SCE) as reference
electrode at 20 °C. All chromatography was performed with
Merck silica gel (70-230 mesh). All reagents were used as
purchased unless otherwise stated. All solvents were dried
according to standard procedures. All reactions were carried out
under an atmosphere of dry argon.
(1H, d, J ) 15.3), 6.28 (3H, m), 4.85 (1H, d, J ) 9.3), 4.38
(1H, d, J ) 8.7), 4.12 (1H, d, J ) 9.3), 2.87 (3H, s); 13C NMR
(75 MHz, CDCl3/CS2 1/1) δ 147.2, 146.7, 146.3, 146.2, 146.0,
145.2, 145.1, 145.0, 144.6, 144.3, 144.1, 143.1, 142.6, 142.5,
142.1, 142.0, 140.2, 136.3, 135.5, 135.1, 133.5, 132.7, 130.6,
128.9, 128.1, 125.4, 125.2, 125.0, 123.9, 120.8, 119.5, 119.0,
118.9, 118.6, 111.2, 110.6, 81.8, 77.2, 69.7, 69.3, 40.1; FTIR
(KBr) 1634, 1462, 1330, 1230, 180, 1027, 976, 795, 767, 729,
639, 598, 574, 562, 553, 526 cm-1; UV-vis (CH2Cl2) λmax (log
ꢀ): 232 (3.97), 258 (5.20), 318 (1.83), 432 (0.97) nm; MS
(FAB+) (m/z): 1031 (M+, 19%), 720 (98%).
Semiempirical calculations were carried out at the PM3/RHF
level with the Hyperchem 5.1 program package.31
Picosecond laser flash photolysis experiments were carried
out with 355-nm laser pulses from a mode-locked, Q-switched
Quantel YG-501 DP ND:YAG laser system (pulse width ∼18
ps, 2-3 mJ/pulse). The white continuum picosecond probe pulse
was generated by passing the fundamental output through a D2O/
H2O solution. Nanosecond laser flash photolysis experiments
were performed with laser pulses from a Molectron UV-400
nitrogen laser system (337.1 nm, 8 ns pulse width, 1 mJ/pulse)
in a front-face excitation geometry. The photomultiplier output
was digitized with a Tektronix 7912 AD programmable digi-
tizer.38 Pulse radiolysis experiments were accomplished with
50 ns pulses of 8 MeV electrons from a model TB-8/16-1S
electron linear accelerator. Dosimetry was based on the oxidation
of SCN- to (SCN)2•-, which, in N2O-saturated aqueous solu-
tions, takes place with G ∼ 6 (G denotes the number of species
per 100 eV, or the approximate micromolar concentration per
10 J of absorbed energy). The radical concentration generated
per pulse amounts to (1-3) × 10-6 M for all systems
investigated in this study.39 Absorption spectra were recorded
with a Milton Roy Spectronic 3000 Array spectrophotometer.
Emission spectra were recorded on a SLM 8100 Spectrofluo-
rimeter.
Acknowledgment. We are indebted to DGICYT (Project
PB95-0428-CO2) for financial support. M.A.H. acknowledges
M.E.C. of Spain for a research fellowship. Some of this work
was supported by the Office of Basic Energy Sciences of the
U.S. Department of Energy (contribution no. NDRL-4107) from
the Notre Dame Radiation Laboratory). We thank Dr. G. Hug
for many helpful discussions and Dr. I. Carmichael for the PM3
calculations of the TTF HOMO and LUMO.
References and Notes
(1) Wasielewski, M. R. in Photoinduced Electron Transfer, Fox, M.
A.; Chanon, M., Eds., Elsevier: Amsterdam, 1988.
(2) Wasielewski, M. R. Chem. ReV. 1992, 92, 435.
(3) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 1993, 26,
198.
(4) Paddon-Row, M. N. Acc. Chem. Res. 1994, 27, 18.
(5) Kurreck, H.; Huber, M. Angew. Chem., Int. Ed. Engl. 1995, 34,
849.
(6) Kroto, H. W.; Heath, J. R.; O′Brien, S. C.; Curl, R. F.; Smalley,
R. E. Nature 1985¸ 318, 162.
(7) Kra¨tsmer, W.; Lamb, L. D.; Fostiropoulus, K.; Huffman, D. R.
Nature 1990, 347, 354.
(8) Sun, Y.-P. In Molecular and Supramolecular Photochemistry;
Ramamurthy, V., Schanze, K., Eds.; Marcel Dekker: New York, 1997;
Vol. 1. Prato, M. J. Mater. Chem. 1997, 7, 1097. Imahori, H.; Sakata, Y.
AdV. Mater. 1997, 9, 537.
(9) Williams, R. M.; Koeberg, M.; Lawson, J. M.; An, Y.-Z.; Rubin,
Y.; Paddon-Row, M. N.; Verhoeven, J. W. J. Org. Chem. 1996, 61, 5055.
(10) Guldi, D. M.; Asmus, K.-D. J. Am. Chem. Soc. 1997, 119, 5744.
Imahori, H.; Hagiwara, K.; Akiyama, T.; Aoki, M.; Taniguchi, S.; Okada,
T.; Shirakawa, M.; Sakata, Y. Chem. Phys. Lett. 1996, 263, 545.
(11) For a very recent review on C60-based electroactive organo-
fullerenes, see: Mart´ın, N.; Sa´nchez, L.; Illescas, B.; Pe´rez, I. Chem. ReV.
1998, 98, 2527.
N-Methyl-2′-[2-(tetrathiafulvalenyl)ethenyl]pyrrolidino-
[3′,4′:1,2][60]fullerene. (2a). This compound was synthesized
by following the previously reported procedure.20,28
2′-(Tetrathiafulvalenyl)pyrrolidino[3′,4′:1,2][60]fuller-
ene (5). An ODCB solution of C60 (100 mg, 0.138 mmol),
formyl-TTF (4) (64.8 mg, 0.277 mmol), and glycine (20.85 mg,
6.277 mmol) was heated to reflux under argon atmosphere for
2 h. The solvent was removed under reduced pressure, and the
crude material was carefully chromatographed on a silica gel
column using cyclohexane and a cyclohexane:toluene (1:1)
mixture as eluent. Further purification was accomplished by
repetitive precipitation and centrifugation using methanol as
(12) Prato, M.; Maggini, M. Acc. Chem. Res. 1998, 31, 519. Diederich,
F.; Thilgen, C. Science 1996, 271, 317. Taylor, R.; Walton, D. R. M. Nature
1993, 363, 685.
1
solvent. 30% yield (43% based on recovered C60); H NMR
(300 MHz, CDCl3/CS2 1/1) δ: 6.73 (1H, s), 6.31 (2H, s), 5.63
(1H, s), 5.01 (1H, d, J ) 10.2), 4.77 (1H, d, J ) 10.2); 13C
NMR (75 MHz, CDCl3/CS2 1/1) δ: 155.0, 153.5, 152.4, 151.5,
148.0, 147.1, 146.8, 146.1, 146.0, 145.9, 145.8, 145.5, 145.4,
145.3, 145.1, 144.5, 142.5, 142.1, 141.8, 141.5, 134.7, 119.1,
118.9, 117.5, 117.4, 77.2, 72.7, 71.4, 61.0; FTIR (KBr): 2850,
(13) For a recent review on addition reactions of Buckminsterfullerene-
C60, see: Hirsch, A. Synthesis 1995, 895. Diels-Alder reactions were
systematically introduced into fullerene chemistry by Rubin and Mu¨llen;
see: Rubin, Y.; Khan, S.; Freedberg, D. I.; Yeretzian, C. J. Am. Chem.
Soc. 1993, 115, 344. Belik, P.; Gu¨gel, A.; Spickermann, J.; Mu¨llen, K.
Angew. Chem., Int. Ed. Engl. 1993, 32, 78. Gu¨gel, A.; Kraus, A.;
Spickermann, J.; Belik, P.; Mu¨llen, K. Angew. Chem., Int. Ed. Engl. 1994,
33, 559. For recent examples of 1,3-dipolar cycloadditions to C60 see:
Tetrahedron 1996, 52, 4925-5262 (special issue on “Fullerene Chemistry”,
Smith, A. B., III, Ed.).
1736, 1494, 1462, 1261, 1081, 966, 795, 753, 640, 526 cm-1
;
UV-vis (CH2Cl2) λmax (log ꢀ): 232 (4.86), 258 (5.01), 316
(4.63), 430 (3.72) nm; MS (FAB+) (m/z): 965 (M+, 23%), 720
(58%).
(14) Bingel, C. Chem. Ber. 1993, 126, 1957.
(15) Bryce, M. R. J. Mater. Chem 1995, 5, 1481. See also: Handbook
of Organic ConductiVe Molecules and Polymers; Nalwa, N. S., Ed.; John
Wiley & Sons: New York, 1997; Vol. 1.
(16) Gonza´lez, M.; Mart´ın, N.; Segura, J. L.; Gar´ın, J.; Orduna, J.
Tetrahedron Lett. 1998, 39, 3269.
(17) Becher, J. Synthesis 1980, 589.
(18) Jutz, C. Chem. Ber. 1958, 91, 1867.
(19) Friedly, A. C.; Yang, E.; Marder, S. R. Tetrahedron 1997, 53, 2717.
(20) Mart´ın, N.; Sa´nchez, L.; Seoane, C.; Andreu, R.; Gar´ın, J.; Orduna,
J. Tetrahedron Lett. 1996, 37, 5979.
(21) Prato, M.; Maggini, M.; Giacometti, C.; Scorrano, G.; Sandona´,
G.; Farnia, G. Tetrahedron 1996, 52, 5221.
(22) Hudhomme, P.; Boulle´, C.; Rabreau, J. M.; Cariou, M.; Jubault,
M.; Gorgues, A. Synth. Met. 1998, 94, 73. Boulle´, C.; Rabreau, J. M.;
Hudhomme, P.; Cariou, M.; Jubault, M.; Gorgues, A.; Orduna, J.; Gar´ın, J.
N-Methyl-2′-[4-(tetrathiafulvalenyl)butadienyl]pyrroli-
dino[3′,4′:1,2][60]fullerene (7). A toluene solution of C60 (200
mg, 0.33 mmol), TTF derivative (6) (80 mg, 0.28 mmol), and
sarcosine (20.85 mg, 6.277 mmol) was heated to reflux for 24
h. The solvent was removed under reduced pressure, and the
crude material was carefully chromatographed on a silica gel
column with a cyclohexane:toluene (1:1) mixture as eluent.
Further purification was accomplished by repetitive precipitation
and centrifugation: 27% yield (53% based on recovered C60);
1H NMR (300 MHz, CDCl3/CS2 1/1) δ: 7.21 (1H, d, J ) 6.9),
7.13 (1H, d, J ) 6.9), 6.72 (1H, dd, J1 ) 15.3, J2 ) 10.2), 6.43