10.1002/anie.201805707
Angewandte Chemie International Edition
COMMUNICATION
Acknowledgements
This work was financially supported by the Shanghai Municipal
Natural Science Foundation (17ZR1440500, 17PJ1401800).
Keywords: polyelectrolytes micelles, coordination polymer,
tunable stability and properties, MRI contrast agent
[1]
[2]
a) R. Chollakup, J. B. Beck, K. Dirnberger, M. Tirrell, C. D.
Eisenbach, Macromolecules 2013, 46, 2376-2390; b) D. Priftis, X.
Xia, K. O. Margossian, S. L. Perry, L. Leon, J. Qin, J. J. de Pablo, M.
Tirrell, Macromolecules 2014, 47, 3076-3085.
a) R. Chollakup, W. Smitthipong, C. D. Eisenbach, M. Tirrell,
Macromolecules 2010, 43, 2518-2528; b) A. B. Kayitmazer, A. F.
Koksal, E. Kilic Iyilik, Soft Matter 2015, 11, 8605-8612; c) E. Spruijt,
A. H. Westphal, J. W. Borst, M. A. C. Stuart, J. van der Gucht,
Macromolecules 2010, 43, 6476-6484.
[3]
[4]
a) E. Spruijt, J. Sprakel, M. Lemmers, M. A. Cohen Stuart, J. van
der Gucht, Phys Rev Lett 2010, 105, 4; b) E. Spruijt, M. A. C. Stuart,
J. van der Gucht, Macromolecules 2013, 46, 1633-1641.
a) A. Harada, K. Kataoka, Macromolecules 1995, 28, 5294-5299;
b) S. van der Burgh, A. de Keizer, M. A. Cohen Stuart, Langmuir
2004, 20, 1073-1084; c) A. V. Kabanov, T. K. Bronich, V. A. Kabanov,
K. Yu, A. Eisenberg, Macromolecules 1996, 29, 6797-6802.
a) Y. Lee, K. Kataoka, Soft Matter 2009, 5, 3810-3817; b) K. A.
Black, D. Priftis, S. L. Perry, J. Yip, W. Y. Byun, M. Tirrell, ACS Macro
Letters 2014, 3, 1088-1091; c) Y. T. Sun, A. L. Wollenberg, T. M.
O'Shea, Y. X. Cui, Z. H. Zhou, M. V. Sofroniew, T. J. Deming, J. Am.
Chem. Soc. 2017, 139, 15114-15121.
[5]
[6]
[7]
I. K. Voets, A. de Keizer, M. A. Cohen Stuart, Adv. Colloid Interface
Sci. 2009, 147-48, 300-318.
a) X. F. Yuan, A. Harada, Y. Yamasaki, K. Kataoka, Langmuir 2005,
21, 2668-2674; b) S. Chuanoi, Y. Anraku, M. Hori, A. Kishimura, K.
Kataoka, Biomacromolecules 2014, 15, 2389-2397; c) M.
Fernandez-Villamarin, A. Sousa-Herves, S. Porto, N. Guldris, J.
Martínez-Costas, R. Riguera, E. Fernandez-Megia, Polym. Chem.
2017, 8, 2528-2537; d) I.K. Voets, A. de Keizer, M.A. Cohen Stuart,
J. Justynska, H. Schlaad Macromolecules 2007, 40, 2158-2164.
a) Y. Yan, N. A. M. Besseling, A. de Keizer, A. T. M. Marcelis, M.
Drechsler, M. A. Cohen Stuart, Angew. Chem.-Int. Edit. 2007, 46,
1807-1809; b) Y. Yan, N. A. M. Besseling, A. de Keizer, M. A. C.
Stuart, J. Phys. Chem. B 2007, 111, 5811-5818.
a) J. Y. Wang, A. de Keizer, H. P. van Leeuwen, Y. Yan, F. Vergeldt,
H. van As, P. H. H. Bomans, N. Sommerdijk, M. A. Cohen Stuart, J.
van der Gucht, Langmuir 2011, 27, 14776-14782; b) J. Y. Wang,
A. H. Velders, E. Gianolio, S. Aime, F. J. Vergeldt, H. Van As, Y. Yan,
M. Drechsler, A. de Keizer, M. A. Cohen Stuart, J. van der Gucht,
Chem. Commun. 2013, 49, 3736-3738.
Figure 3. a) Relative viabilities of SMCC-7721 cells incubated with Mn-L3
micelles at different Mn2+ concentration for 24h. b) In vivo T1-weighted MR
images (0.47T) and color-mapped images of a mouse at different time post-
injection of a Mn-L3 micelles solution at a dose of 30 μmol /kg based on Mn2+
.
[8]
[9]
Arrows indicate the kidney and liver.
In conclusion, we have synthesized and employed a new tris-
ligand with three DPA groups grafted on a benzene ring, to create
branched coordination polymers. Combining mixtures of this tris-
ligand (L3) and a DPA-based bis-ligand (L2) with a polycationic-
neutral diblock copolymer we obtain mixed PIC micelles with a
number of cross-links in the micellar core regulated simply by
varying the L3/L2 ratio. These mixed Mn-L2-L3 micelles feature
enhanced, tunable salt stability and magnetic relaxivity.
The presented strategy is generally applicable to other metal
ions. For example, both Zn-L2-L3 and Ni-L2-L3 micelles show
tunable response and enhanced stability against salt (Figures
S12, S13). Hence, by simple variation of composition (in terms of
metals and ligands) we can make many kinds of polyelectrolyte
complex micelles (PIC micelles) with adjusted properties which
will most likely see more applications in different fields. As an
example of a biomedical application, we prepared Mn-L3 micelles
and find that these micelles feature high stability against salt, high
relaxivity, good biocompatibility and strong contrast enhancement
in a T1-weighted in vivo MRI test, demonstrating their excellent
performance as MRI contrast agent.
[10]
[11]
J. Y. Wang, A. Groeneveld, M. Oikonomou, A. Prusova, H. Van As,
J. W. M. van Lent, A. H. Velders, Soft Matter 2016, 12, 99-105.
a) Y. Yan, A. de Keizer, M. A. Cohen Stuart, M. Drechsler, N. A. M.
Besseling, J. Phys. Chem. B 2008, 112, 10908-10914; b) J. Y. Wang,
A. de Keizer, R. Fokkink, Y. Yan, M. A. Cohen Stuart, J. van der
Gucht, J. Phys. Chem. B 2010, 114, 8313-8319.
J. Wang, M. A. Cohen Stuart, A. T. M. Marcelis, M. Colomb-Delsuc,
S. Otto, J. van der Gucht, Macromolecules 2012, 45, 7179-7185.
a) S. G. Crich, J. C. Cutrin, S. Lanzardo, L. Conti, F. K. Kalman, I.
Szabo, N. R. Lago, A. Iolascon, S. Aime, Contrast Media Mol.
Imaging 2012, 7, 281-288; b) I. Szabo, S. G. Crich, D. Alberti, F. K.
Kalman, S. Aime, Chem. Commun. 2012, 48, 2436-2438.
a) E. M. Gale, I. P. Atanasova, F. Blasi, I. Ay, P. Caravan, J. Am. Chem.
Soc. 2015, 137, 15548-15557; b) A. Forgacs, R. Pujales-Paradela,
M. Regueiro-Figueroa, L. Valencia, D. Esteban-Gomez, M. Botta,
C. Platas-Iglesias, Dalton Trans 2017, 46, 1546-1558.
[12]
[13]
[14]
[15]
a) M. Park, N. Lee, S. H. Choi, K. An, S.-H. Yu, J. H. Kim, S.-H. Kwon,
D. Kim, H. Kim, S.-I. Baek, T.-Y. Ahn, O. K. Park, J. S. Son, Y.-E. Sung,
This article is protected by copyright. All rights reserved.