ChemComm
Communication
Table 1 Data for adsorbed surfactant molecules from their adsorption isotherms on CTFs
Adsorbed amount Gb
Area per molecule,
Surfactanta
Solid [SBET/m2 gꢀ1
]
(mmol mꢀ2
)
(mg mꢀ2
)
(g gꢀ1
)
as (nm2)
c
SDS
SDS
SDS
C12EO7
C12EO7
CTF-1(600) [1390]
CTF-1(400) [970]
5.0
5.0
2.0
7.0
2.5
1.4
1.4
0.6
3.5
1.3
1.9
1.4
0.1
4.9
0.2
0.33
0.33
0.83
0.24
0.66
Carbon blackd [150]
CTF-1(600) [1390]
Carbon blackd [150]
a
b
c
SDS = sodium dodecylsulfate; C12EO7 = alkyl polyglycolether. Adsorbed amount G at c = 8.0 mmol Lꢀ1 from eqn (S1) (ESI). From the adsorption
isotherms, eqn (1). To be compared with a limiting area per molecule of 1.05 nm2 in the horizontal orientation and 0.2 nm2 in the vertical
orientation from Langmuir film balance measurements.20 d Printex L from Evonik.
´
7 J. Germain, J. Hradil, J. M. J. Frechet and F. Svec, Chem. Mater., 2006,
18, 4430–4435.
From the gravimetric adsorption of the surfactants (Table 1)
related to surface area and mass of the solid adsorbent it
is evident that the gravimetric uptake capacity of CTFs is up
to 20-times the amount of carbon black by weight (g gꢀ1) and
about 2.5 times the amount by surface area (mg mꢀ2) for the
ionic SDS surfactant. For the non-ionic C12EO7 surfactant the
adsorbed amounts by weight (g gꢀ1) are even increased due to
the higher molecular mass of the non-ionic surfactant compared
to the anionic surfactant and the higher uptake of the non-ionic
surfactant by surface area (mol mꢀ2).
In summary, this comparative study demonstrates the
potential for unusually high adsorbed amounts of surfactants
on CTF solids due to their high surface area. Hence, CTFs are
not only interesting for gas adsorption but also show interesting
properties for the application as adsorbents from solutions,
taking into account their solvothermal chemical stability. SEM
images of before and after SDS adsorption show no evident
change in microscopic CTF morphology (Fig. S5, ESI†).
8 B. S. Ghanem, K. J. Msayib, N. B. McKeown, K. D. M. Harris, Z. Pan,
P. M. Budd, A. Butler, J. Selbie, D. Book and A. Walton, Chem.
Commun., 2007, 67–69.
9 H. Zhao, Z. Jin, H. Su, J. Zhang, X. Yao, H. Zhao and G. Zhu, Chem.
Commun., 2013, 49, 2780–2782.
10 J.-X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell, H. Niu,
C. Dickinson, A. Y. Ganin, M. J. Rosseinsky, Y. Z. Khimyak and
A. I. Cooper, Angew. Chem., Int. Ed., 2007, 46, 8574–8578.
11 S.-Y. Ding and W. Wang, Chem. Soc. Rev., 2013, 42, 548–568;
introduction to themed issue on COFs: A. I. Cooper, CrystEngComm,
2013, 15, 1483; S. Kandambeth, A. Mallick, B. Lukose, M. V. Mane,
T. Heine and R. Banerjee, J. Am. Chem. Soc., 2012, 134, 19524–19527.
12 P. Katekomol, J. Roeser, M. Bojdys, J. Weber and A. Thomas, Chem.
Mater., 2013, 25, 1542–1548; J. Roeser, K. Kailasam and A. Thomas,
ChemSusChem, 2012, 5, 1793–1799.
13 S. Hug, M. E. Tauchert, S. Li, U. E. Pachmayr and B. V. Lotsch,
J. Mater. Chem., 2012, 22, 13956–13964; C. E. Chan-Thaw, A. Villa,
P. Katekomol, D. Su, A. Thomas and L. Prati, Nano Lett., 2010, 10,
537–541.
14 S. Hug, M. B. Mesch, H. Oh, N. Popp, M. Hirscher, J. Senker and
B. V. Lotsch, J. Mater. Chem. A, 2014, 2, 5928–5936; A. Bhunia,
V. Vasylyeva and C. Janiak, Chem. Commun., 2013, 49, 3961–3963;
¨
A. Bhunia, I. Boldog, A. Moller and C. Janiak, J. Mater. Chem. A, 2013,
1, 14990–14999.
15 T. Wang, K. Kailasam, P. Xiao, G. Chen, L. Chen, L. Wang, J. Li and
J. Zhu, Microporous Mesoporous Mater., 2014, 187, 63–70; J. Liu,
H. Chen, S. Zheng and Z. Xu, J. Chem. Eng. Data, 2013, 58,
3557–3562; J. Liu, E. Zong, H. Fu, S. Zheng, Z. Xu and D. Zhu,
J. Colloid Interface Sci., 2012, 372, 99–107; W. Zhang, F. Liang, C. Li,
L.-G. Qiu, Y.-P. Yuan, F.-M. Peng, X. Jiang, A.-J. Xie, Y.-H. Shen and
J.-F. Zhu, J. Hazard. Mater., 2011, 186, 984–990.
Notes and references
1 F. Rouquerol, J. Rouquerol and K. Sing, Adsorption by Powders and
Porous Solids Principles, Methodology and Applications, Elsevier, 1999.
2 Introduction to themed issue on porous carbon materials: A.-H. Lu
and S. Dai, J. Mater. Chem. A, 2013, 1, 932.
3 J. R. Morris, C. I. Contescu, M. F. Chisholm, V. R. Cooper, J. Guo,
L. He, Y. Ihm, E. Mamontov, Y. B. Melnichenko, R. J. Olsen, 16 B. Dobias, X. Qiu and W. von Rybinski, Solid-Liquid Dispersions,
S. J. Pennycook, M. B. Stone, H. Zhang and N. C. Gallego, J. Mater. Surfactant Science Series, Marcel Dekker, 1999.
Chem. A, 2013, 1, 9341–9350; Y. Xia, Z. Yang and Y. Zhu, J. Mater. 17 M. J. Rosen and M. Dahanayake, Industrial Utilization of Surfactants:
¨
Chem. A, 2013, 1, 9365–9381; N. Fechler, S.-A. Wohlgemuth, P. Jaker
and M. Antonietti, J. Mater. Chem. A, 2013, 1, 9418–9421; S. J. Yang, 18 W. von Rybinski and M. J. Schwuger, Adsorption and Wetting, Nonionic
J. H. Kang, H. Jung, T. Kim and C. R. Park, J. Mater. Chem. A, 2013, 1, Surfactants, ed. M. J. Schick, Marcel Dekker, 1987, pp. 45–107.
9427–9432; L. Huang and D. Cao, J. Mater. Chem. A, 2013, 1, 19 J. M. Corkill, J. F. Goodman and J. R. Tate, Trans. Faraday Soc., 1966,
9433–9439. 62, 979–986.
4 A. G. Hsieh, C. Punckt, S. Korkut and I. A. Aksay, J. Phys. Chem. B, 20 H. D. Dorfler, Grenzflachen und kolloid-disperse Systeme, Springer,
2013, 117, 7950–7958. Heidelberg, 2002, p. 143.
Principles and Practice, AOCS Press, Illinois, 2001.
¨
¨
5 P. Kuhn, M. Antonietti and A. Thomas, Angew. Chem., Int. Ed., 2008, 47, 21 E. J. Wanless and W. A. Ducker, Langmuir, 1997, 13, 1463–1474.
3450–3453; P. Kuhn, A. l. Forget, D. Su, A. Thomas and M. Antonietti, 22 H. Lange and P. Jeschke, in Nonionic Surfactants, ed. M. Schick,
J. Am. Chem. Soc., 2008, 130, 13333–13337; M. J. Bojdys, J. Jeromenok,
A. Thomas and M. Antonietti, Adv. Mater., 2010, 22, 2202–2205.
6 M. G. Rabbani and H. M. El-Kaderi, Chem. Mater., 2012, 24, 1511–1517.
Surfactant Science Series, Marcel Dekker, 1987, pp. 1–44.
23 X. Liu, D. Wu, S. Turgman-Cohen, J. Genzer, T. W. Theyson and
O. J. Rojas, Langmuir, 2010, 26, 9565–9574.
486 | Chem. Commun., 2015, 51, 484--486
This journal is ©The Royal Society of Chemistry 2015