Organic Letters
Letter
structure was constructed to afford a pentalayered aromatic
4416−4439. (d) Iyoda, M.; Yamakawa, J.; Rahman, M. J. Angew.
Chem., Int. Ed. 2011, 50, 10522−10553.
8
stack. All the longitudinal axes of the two anthraquinone
4
−
(2) (a) Odell, B.; Reddington, M. V.; Slawin, A. M. Z.; Spencer, N.;
Stoddart, J. F.; Williams, D. J. Angew. Chem., Int. Ed. Engl. 1988, 27,
moieties of 5a , the two vinylenebispyridinium moieties of
4+
1
0 , and 11 were almost parallel, and the distance of each pair
1
547−1550. (b) Ashton, P. R.; Odell, B.; Reddington, M. V.; Slawin,
A. M. Z.; Stoddart, J. F.; Williams, D. J. Angew. Chem., Int. Ed. Engl.
988, 27, 1550−1553. (c) Ashton, P. R.; Ballardini, R.; Balzani, V.;
Gandolfi, M. T.; Marquis, D. J.-F.; Perez-Garcia, L.; Prodi, L.; Stoddart,
J. F.; Venturi, M. J. Chem. Soc., Chem. Commun. 1994, 177−180.
(d) Barnes, J. C.; Jurícek, M.; Strutt, N. L.; Frasconi, M.; Sampath, S.;
of the adjacent aromatic planes was ca. 3.5 Å, which would be
suitable for aromatic π−π interaction. In addition, the π−π and
methylene CH−π interactions between the diphenylethynyl
1
́
linkage of 5a4 and the p-xylylene linkage of 10 , and the
−
4+
aromatic CH−π interactions between the p-xylylene linkage of
̌
4+
10
and 11, were also found. Those interactions would be
Giesener, M. A.; McGrier, P. L.; Bruns, C. J.; Stern, C. L.; Sarjeant, A.
important for the parallel association of 11@10@5a.
A.; Stoddart, J. F. J. Am. Chem. Soc. 2013, 135, 183−192.
(3) (a) McCord, D. J.; Small, J. H.; Greaves, J.; Van, Q. N.; Shaka, A.
In summary, we have reported the preparation of shape-
4−
4−
J.; Fleischer, E. B.; Shea, K. J. J. Am. Chem. Soc. 1998, 120, 9763−9770.
b) Abrahams, B. F.; Price, D. J.; Robson, R. Angew. Chem., Int. Ed.
006, 45, 806−810. (c) Harris, W. R.; Amin, S. A.; Kupper, F. C.;
Green, D. H.; Carrano, C. J. J. Am. Chem. Soc. 2007, 129, 12263−
2271. (d) Abrahams, B. F.; Boughton, B. A.; Choy, H.; Clarke, O.;
persistent tetraanionic spiroborate nanocycles 4 and 5 by
reacting bis(dihydroxynaphthalene) (1,2) with tetrahydroxy-
anthraquinone 3 in the presence of boric acid in a self-
(
2
̈
4
−
organized manner. Spiroborate nanocycle 4b exhibited
1
molecular recognition ability toward cationic aromatic guest
Grannas, M. J.; Price, D. J.; Robson, R. Inorg. Chem. 2008, 47, 9797−
2
+
4−
8
, whereas no interaction was observed between 4b and
9
803.
4−
electrically neutral guest 7. Spiroborate nanocycle 5 , bearing a
larger ring size, also showed inclusion behavior toward its
cationic guest. The vinylogous analog of cyclobis(paraquat-p-
(4) (a) Danjo, H.; Hirata, K.; Yoshigai, S.; Azumaya, I.; Yamaguchi,
K. J. Am. Chem. Soc. 2009, 131, 1638−1639. (b) Danjo, H.; Mitani, N.;
Muraki, Y.; Kawahata, M.; Azumaya, I.; Yamaguchi, K.; Miyazawa, T.
Chem.Asian J. 2012, 7, 1529−1532.
phenylene) 104 was incorporated into 5 to form 10@5, a
+
4−
(
5) CCDC-1045666 (10@5b), 1045667 ([11@10]·(PF ) ),
6 4
supramolecular ring@ring structure. Furthermore, a three-
4
−
4+
1045668 (11@10@5), 1045669 (4a·(TBA) ), and 1045670 (9·
4
component association was realized by mixing 5 , 10 , and
naphthalene (11) to form 11@10@5 as a Matryoshka-type,
nestable guest@ring@ring supramolecular structure. The
formation of these associates was observed in solution and
the solid state by NMR, CSI-MS, and X-ray crystallographic
analyses.
(
TBA) ) contain the supplementary crystallographic data for this
2
(6) (a) Ono, K.; Yoshizawa, M.; Akita, M.; Kato, T.; Tsunobuchi, Y.;
Ohkoshi, S.; Fujita, M. J. Am. Chem. Soc. 2009, 131, 2782−2783.
(b) Klosterman, J. K.; Yamauchi, K.; Fujita, M. Chem. Soc. Rev. 2009,
3
8, 1714−1725. (c) Yamauchi, Y.; Yoshizawa, M.; Akita, M.; Fujita, M.
ASSOCIATED CONTENT
Supporting Information
J. Am. Chem. Soc. 2010, 132, 960−966.
(
(
■
7) Yamaguchi, K. J. Mass Spectromet. 2003, 38, 473−490.
8) (a) Parac, T. N.; Scherer, M.; Raymond, K. N. Angew. Chem., Int.
*
S
Detailed experimental procedures for synthesis and character-
ization of all new compounds, NOESY NMR and CSI-MS data
Ed. 2000, 39, 1239−1242. (b) Chiu, S.-H.; Pease, A. R.; Stoddart, J. F.;
White, A. J. P.; Williams, D. J. Angew. Chem., Int. Ed. 2002, 41, 270−
2
74. (c) Day, A. I.; Blanch, R. J.; Arnold, A. P.; Lorenzo, S.; Lewis, G.
of 11@10@5a, and X-ray diffraction data of 9·(TBA) , [11@
2
R.; Dance, I. Angew. Chem., Int. Ed. 2002, 41, 275−277. (d) Schalley,
C. A. Angew. Chem., Int. Ed. 2002, 41, 1513−1515. (e) Loren, J. C.;
Yoshizawa, M.; Haldimann, R. F.; Linden, A.; Siegel, J. S. Angew.
Chem., Int. Ed. 2003, 42, 5702−5705. (f) Kawase, T.; Tanaka, K.;
Shiono, N.; Seirai, Y.; Oda, M. Angew. Chem., Int. Ed. 2004, 43, 1722−
1
0]·(PF ) , 10@5b, and 11@10@5a in the form of single-
6 4
crystal X-ray crystallographic information files (CIF). This
1
724. (g) Kawase, T.; Nishiyama, Y.; Nakamura, T.; Ebi, T.;
Matsumoto, K.; Kurata, H.; Oda, M. Angew. Chem., Int. Ed. 2007,
6, 1086−1088. (h) Liu, Y. Tetrahedron Lett. 2007, 48, 3871−3874.
i) Forgan, R. S.; Wang, C.; Friedman, D. C.; Spruell, J. M.; Stern, C.
AUTHOR INFORMATION
■
4
(
L.; Sarjeant, A. A.; Cao, D.; Stoddart, J. F. Chem.Eur. J. 2012, 18,
Notes
202−212.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by The Hirao Taro Foundation of the
Konan University Association for Academic Research. We
thank Drs. G. Ueno, N. Mizuno, and S. Baba (Japan
Synchrotron Radiation Research Institute (JASRI)) for
invaluable help in data collection in the X-ray analysis of 9·
(
TBA) , [11@10]·(PF ) , 10@5b, and 11@10@5a. The
2 6 4
synchrotron radiation experiment was performed at the
BL26B2 and BL38B1 stations of SPring-8 with the approval
of JASRI (Proposal Nos. 2014A1214 and 2014B1423).
REFERENCES
1) For reviews, see: (a) Ho
329. (b) Grave, C.; Schlu
098. (c) Zhang, W.; Moore, J. S. Angew. Chem., Int. Ed. 2006, 45,
■
(
1
̈
ger, S. Chem.Eur. J. 2004, 10, 1320−
̈
ter, A. D. Eur. J. Org. Chem. 2002, 3075−
3
D
Org. Lett. XXXX, XXX, XXX−XXX