Full Paper
2005, 127, 15998; b) B. C. Boren, S. Narayan, L. K. Rasmussen, L. Zhang,
H. Zhao, Z. Lin, G. Jia, V. V. Fokin, J. Am. Chem. Soc. 2008, 130, 8923; c)
A. Tam, U. Arnold, M. B. Soellner, R. T. Raines, J. Am. Chem. Soc. 2007,
129, 12670.
and catalyst VIII (0.01 mmol). The reaction mixture was stirred at
room temperature for 24 h, and then the solvent was removed
under vacuum. The residue was purified by silica gel chromatogra-
phy to yield the desired product. However, if alkyl azides were used,
the desired product was not obtained.
[14] For the example of IrAAC, see: S. Ding, G. Jia, J. Sun, Angew. Chem. Int.
Ed. 2014, 53, 1877; Angew. Chem. 2014, 126, 1908.
[15] For recent highlights and reviews on 1,2,3-triazole synthesis, see: a)
S. S. V. Ramasastry, Angew. Chem. Int. Ed. 2014, 53, 14310; Angew. Chem.
2014, 126, 14536; b) J. John, J. Thomas, W. Dehaen, Chem. Commun.
2015, 51, 10797; c) C. G. S. Lima, A. Ali, S. S. van Berkel, B. Westermann,
M. W. Paixão, Chem. Commun. 2015, 51, 10784; d) J. P. Wan, D. Q. Hu,
Y. Y. Liu, S. R. Sheng, ChemCatChem 2015, 7, 901.
Supporting Information (see footnote on the first page of this
article): Analytical data for all prepared compounds and intermedi-
1
ates with copies of the H and 13C NMR spectra.
Acknowledgments
[16] For selected examples of 1,2,3-triazole synthesis, see: a) J. Thomas, J.
John, N. Parekh, W. Dehaen, Angew. Chem. Int. Ed. 2014, 53, 10155;
Angew. Chem. 2014, 126, 10319; b) A. Ali, A. G. Corrêa, D. Alves, J. Zuker-
man-Schpector, B. Westermann, M. A. B. Ferreira, M. W. Paixão, Chem.
Commun. 2014, 50, 11926; c) G. Cheng, X. Zeng, J. Shen, X. Wang, X. Cui,
Angew. Chem. Int. Ed. 2013, 52, 13265; Angew. Chem. 2013, 125, 13507;
d) S. S. van Berkel, S. Brauch, L. Gabriel, M. Henze, S. Stark, D. Vasilev,
L. A. Wessjohann, M. Abbas, B. Westermann, Angew. Chem. Int. Ed. 2012,
51, 5343; Angew. Chem. 2012, 124, 5437; e) Z. Chen, Q. Yan, Z. Liu, Y. Xu,
Y. Zhang, Angew. Chem. Int. Ed. 2013, 52, 13324; Angew. Chem. 2013,
125, 13566; f) Z. J. Cai, X. M. Lu, Y. Zi, C. Yang, L. J. Shen, J. Li, S. Y. Wang,
S. J. Ji, Org. Lett. 2014, 16, 5108; g) X. J. Quan, Z. H. Ren, Y. Y. Wang, Z. H.
Guan, Org. Lett. 2014, 16, 5728; h) Z. Chen, Q. Yan, H. Yi, Z. Liu, A. Lei, Y.
Zhang, Chem. Eur. J. 2014, 20, 13692; i) J. John, J. Thomas, N. Parekh, W.
Dehaen, Eur. J. Org. Chem. 2015, 4922; j) Y. Chen, G. Nie, Q. Zhang, S.
Ma, H. Li, Q. Hu, Org. Lett. 2015, 17, 1118; k) F. Jia, C. Xu, Z. Zhou, Q. Cai,
D. Li, A. Wu, Org. Lett. 2015, 17, 2820; l) F. Wei, H. Li, C. Song, Y. Ma, L.
Zhou, C. Tung, Z. Xu, Org. Lett. 2015, 17, 2860; m) H. Bai, Z. Cai, S. Y.
Wang, S. J. Ji, Org. Lett. 2015, 17, 2898; n) W. Wang, X. Peng, F. Wei, C.
Tung, Z. Xu, Angew. Chem. Int. Ed. 2016, 55, 649; Angew. Chem. 2016,
128, 659–663.
The authors acknowledge the financial support from the start-
up grant from Qingdao University and the National Natural Sci-
ence Foundation of China (NSFC) (grant number 21502043).
Keywords: Click chemistry · Azides · Cycloaddition ·
Enolates · Nitrogen heterocycles
[1] For selected reviews, see: a) R. Kharb, P. C. Sharma, M. S. Yar, J. Enzyme
Inhib. Med. Chem. 2011, 26, 1; b) R. S. Bohacek, C. McMartin, W. C. Guida,
Med. Res. Rev. 1996, 16, 3; c) M. Meldal, C. W. Tornoe, Chem. Rev. 2008,
108, 2952; d) Y. L. Angell, K. Burgess, Chem. Soc. Rev. 2007, 36, 1674.
[2] a) F. Pagliai, T. Pirali, E. D. Grosso, R. D. Brisco, G. C. Tron, G. Sorba, A. A.
Genazzani, J. Med. Chem. 2006, 49, 467; b) T. Lee, M. Cho, S.-Y. Ko, H.-J.
Youn, D. J. Baek, W.-J. Cho, C.-Y. Kang, S. Kim, J. Med. Chem. 2007, 50,
585; c) G. Smith, M. Glaser, M. Perumal, Q.-D. Nguyen, B. Shan, E. Arstad,
E. O. Aboagye, J. Med. Chem. 2008, 51, 8057; d) C.-B. Yim, I. Dijkgraaf, R.
Merkx, C. Versluis, A. Eek, G. E. Mulder, D. T. S. Rijkers, O. C. Boerman,
R. M. J. Liskamp, J. Med. Chem. 2010, 53, 3944; e) F. Pisaneschi, Q.-D.
Nguyen, E. Shamsaei, M. Glaser, E. Robins, M. Kaliszczak, G. Smith, A. C.
Spivey, E. O. Aboagye, Bioorg. Med. Chem. 2010, 18, 6634.
[3] M. J. Soltis, H. J. Yeh, K. A. Cole, N. Whittaker, R. P. Wersto, E. C. Kohn,
Drug Metab. Dispos. 1996, 24, 799.
[4] a) H. C. Neu, K. P. Fu, Antimicrob. Agents Chemother. 1979, 15, 209; b)
C. C. Blackwell, E. H. Freimer, G. C. Tuke, Antimicrob. Agents Chemother.
1976, 10, 288.
[5] D. K. Mohapatra, P. K. M. Shabab, M. I. Khan, Bioorg. Med. Chem. Lett.
2009, 19, 5241.
[6] Y. Morzherin, P. E. Prokhorova, D. A. Musikhin, T. V. Glukhareva, Z. Fan,
Pure Appl. Chem. 2011, 83, 715.
[7] a) A. J. Link, D. A. Tirrell, J. Am. Chem. Soc. 2003, 125, 11164; b) Q. Wang,
T. R. Chan, R. Hilgraf, V. V. Fokin, K. B. Sharpless, M. G. Finn, J. Am. Chem.
Soc. 2003, 125, 3192; c) J.-F. Lutz, Z. Zarafshani, Adv. Drug Delivery Rev.
2008, 60, 958.
[17] a) D. B. Ramachary, K. Ramakumar, V. V. Narayana, Chem. Eur. J. 2008, 14,
9143; b) D. B. Ramachary, A. B. Shashank, Chem. Eur. J. 2013, 19, 13175;
c) D. B. Ramachary, A. B. Shashank, S. Karthik, Angew. Chem. Int. Ed. 2014,
53, 10420; Angew. Chem. 2014, 126, 10588; d) A. B. Shashank, S. Karthik,
R. Madhavachary, D. B. Ramachary, Chem. Eur. J. 2014, 20, 16877; e) P. M.
Krishna, D. B. Ramachary, S. Peesapati, RSC Adv. 2015, 5, 62062; f) D. B.
Ramachary, P. M. Krishna, J. Gujral, G. S. Reddy, Chem. Eur. J. 2015, 21,
16775.
[18] M. Belkheira, D. El Abed, J.-M. Pons, C. Bressy, Chem. Eur. J. 2011, 17,
12917.
[19] a) L. J. T. Danence, Y. Gao, M. Li, Y. Huang, J. Wang, Chem. Eur. J. 2011,
17, 3584; b) L. Wang, S. Y. Peng, L. J. T. Danence, Y. Gao, J. Wang, Chem.
Eur. J. 2012, 18, 6088; c) W. J. Li, Q. F. Jia, Z. Y. Du, J. Wang, Chem.
Commun. 2013, 49, 10187; d) D. K. J. Yeung, T. Gao, J. Y. Huang, S. F. Sun,
H. B. Guo, J. Wang, Green Chem. 2013, 15, 2384; e) L. Wang, J. Y. Huang,
X. J. Gong, J. Wang, Chem. Eur. J. 2013, 19, 7555; f) W. J. Li, Z. Y. Du, J. Y.
Huang, Q. F. Jia, K. Zhang, J. Wang, Green Chem. 2014, 16, 3003; g) W. J.
Li, J. Wang, Angew. Chem. Int. Ed. 2014, 53, 14186; Angew. Chem. 2014,
126, 14410; h) W. J. Li, Z. Y. Du, K. Zhang, J. Wang, Green Chem. 2015,
17, 781; i) Q. F. Jia, G. M. Yang, L. Chen, Z. Y. Du, J. Wei, Y. Zhong, J. Wang,
Eur. J. Org. Chem. 2015, 3435; j) W. J. Li, X. Zhou, Y. Luan, J. Wang, RSC
Adv. 2015, 5, 88816.
[8] C. J. Hawker, V. V. Fokin, M. G. Finn, K. B. Sharpless, Aust. J. Chem. 2007,
60, 381.
[9] a) R. A. Evans, Aust. J. Chem. 2007, 60, 384; b) J. A. Johnson, J. T. Kober-
stein, M. G. Finn, N. J. Turro, Macromol. Rapid Commun. 2008, 29, 1052.
[10] a) R. Huisgen, Angew. Chem. Int. Ed. Engl. 1963, 2, 565; Angew. Chem.
1963, 75, 604; b) R. Huisgen, Angew. Chem. Int. Ed. Engl. 1963, 2, 633;
Angew. Chem. 1963, 75, 742.
[11] C. W. Tornoe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057.
[12] a) H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40,
2004; Angew. Chem. 2001, 113, 2056; b) V. V. Rostovtsev, L. G. Green, V. V.
Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596; Angew. Chem.
2002, 114, 2708; c) F. Himo, T. Lovell, K. B. Sharpless, J. Am. Chem. Soc.
2005, 127, 210.
[20] Z. Wang, X. Bi, P. Liao, R. Zhang, Y. Liang, D. Dong, Chem. Commun. 2012,
48, 7076.
[21] N. Seus, B. Goldani, E. J. Lenardão, L. Savegnago, M. W. Paixão, D. Alves,
Eur. J. Org. Chem. 2014, 1059.
[13] For selected examples of RuAAC, see: a) L. Zhang, X. Chen, P. Xue, H. H.
Sun, I. D. Williams, K. B. Sharpless, V. V. Fokin, G. Jia, J. Am. Chem. Soc.
Received: February 15, 2016
Published Online: March 21, 2016
Eur. J. Org. Chem. 2016, 1886–1890
1890
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim