9636 Inorg. Chem. 2010, 49, 9636–9640
DOI: 10.1021/ic1013544
Mechanistic Studies of the Reaction of Ir(III) Porphyrin Hydride with
2,2,6,6-Tetramethylpiperidine-1-oxyl to an Unsupported Ir-Ir Porphyrin Dimer
Siu Yin Lee,† Chi Wai Cheung,† I-Jui Hsu,*,‡ and Kin Shing Chan*,†
†Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong,
‡
People’s Republic of China, and Department of Molecular Science and Engineering, National Taipei University
of Technology, Taipei 10608, Taiwan
Received July 7, 2010
Reaction of hydrido[5,10,15,20-tetrakis(p-tolyl)porphyrinato]iridium(III) (Ir(ttp)H) (1) with 2,2,6,6-tetramethylpiper-
idine-1-oxyl (TEMPO) (2) at room temperature gave a 90% yield of the unsupported iridium(II) porphyrin dimer,
IrII (ttp)2 (3). Kinetic measurements revealed that the oxidation followed overall second-order kinetics: rate =
2
k[Ir(ttp)H][TEMPO], k(25 °C) = 6.65 ꢀ 10-4 M-1. The entropy of activation (ΔS‡ = -25.3 ( 2.5 cal mol-1 K-1) and
the kinetic isotope effect of 7.2 supported a bimolecular associative mechanism in the rate-determining hydrogen
atom transfer from Ir(ttp)H to TEMPO.
Introduction
as the 1,2-addition to olefins3,14 and benzylic carbon-hydro-
gen bond activation.10 The applications of an iridium(II)
porphyrin dimer as an efficient electrochemical catalyst for
the four-electron reduction of oxygen relevant to fuel cell
technology have also been documented.2,15,16
Unsupported iridium(II) metal bonded dimers, however,
are relatively inaccessible with limited general synthetic
methods available. Most syntheses are rather specialized in
ligand types and experimental conditions. Some examples
involve electrochemical1 and chemical oxidation of Ir(I)11,12
complexes, chemical reduction of Ir(III),6,13 and prolonged
photolysis of Ir(III) complexes.2,3,6
Unsupported iridium(II) complexes have drawn much
interest from chemists due to their fundamental importance
in basic chemical bonding, unique chemical reactivity, and
potential industrial application as fuel cell catalysts.1-15 The
IrII-IrII distances in these complexes can provide an experi-
mental basis for a theoretical understanding of the nature of a
metal-metal single bond.1,6,7,9,11-13 Iridium(II) porphyrin
dimers (IrII2(por)2) are convenient sources of reactive metal-
loradicals displaying unique organometallic reactions, such
*To whom correspondence should be addressed. E-mail: ksc@cuhk.edu.hk
(K.S.C.).
(1) Rasmussen, P. G.; Anderson, J. E.; Bailey, O. H.; Tamres, M.; Bay,
2MIII- H reduction MII- MII
ð1Þ
J. C. J. Am. Chem. Soc. 1985, 107, 279–281.
(2) Collman, J. P.; Kim, M. K. J. Am. Chem. Soc. 1986, 108, 7847–7849.
(3) Del Rossi, K. L.; Wayland, B. B. J. Chem. Soc., Chem. Commun. 1986,
1653–1655.
We have reported the clean and high-yielding reaction of
IrIII(oep)H4,10 (oep = octaethylporphyrinato dianion) with
2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) in benzene
under nitrogen at room temperature to give IrII2(oep)2 as
well as a related macrocylic type complex (eq 1).8 This formal
hydrogen atom transfer (HAT) or controlled reduction at
ambient conditions can access both a rhodium(II) and
iridium(II) porphyrin dimer as well as a sterically hindered
Rh porphyrin monomer17 conveniently simply by the sub-
sequent vacuum removal of the slight excess of TEMPO used
and the coproduct 2,2,6,6-tetramethylpiperidine-1-hydroxyl
(TEMPOH). No overoxidative degradation of air-sensitive
metal(II) dimers occurs. Given the operational simplicity of
this general synthesis of MII-MII with supporting macrocyclic
(4) Chan, K. S.; Leung, Y. B. Inorg. Chem. 1994, 33, 3187.
(5) Heinekey, D. M.; Fine, D. A.; Harper, T. G. P.; Michel, S. T. Can. J.
Chem. 1995, 73, 1116–1125.
(6) Heinekey, D. M.; Fine, D. A.; Barnhart, D. Organometallics 1997, 16,
2530–2538.
€
(7) Huckstdt, H.; Homborh, H. Z. Anorg. Allg. Chem. 1997, 623, 369–378.
(8) Feng, M.; Chan, K. S. Organometallics 2002, 21, 2743–2750.
(9) Villarroya, B. E.; Tejel, C.; Rohmer, M.-M.; Oro, L. A.; Ciriano,
M. A.; Benard, M. Inorg. Chem. 2005, 44, 6536–6544.
(10) Cheung, C. W.; Chan, K. S. Organometallics 2008, 27, 3043–3055.
(11) Patra, S. K.; Rahaman, S. M. W.; Majumdar, M.; Sinha, A.; Bera,
J. K. Chem. Commun. 2008, 22, 2511–2513.
(12) Huang, H.; Rheingold, A. L.; Hughes, R. Organometallics 2009, 28,
1575–1578.
(13) Lee, H.-P.; Hsu, Y.-F.; Chen, T.-R.; Chen, J.-D.; Chen, K. H.-C.;
Wang, J.-C. Inorg. Chem. 2009, 48, 1263–1265.
(14) (a) For properties of IrII porphyrin, see: Zhai, H.; Bunn, A.;
Wayland, B. Chem. Commun. 2001, 1294–1295. (b) Cui, W.; Li, S.; Wayland,
B. B. J. Organomet. Chem. 2007, 692, 3198–3206.
(16) Shi, C.; Mak, K. W.; Chan, K. S.; Anson, F. C. J. Electroanal. Chem.
1995, 397, 321–324.
(15) Collman, J. P.; Chng, L. L.; Tyvoll, D. A. Inorg. Chem. 1995, 34,
1311–1324.
(17) Chan, K. S.; Li, X. Z.; Dzik, W. I.; de Bruin, B. J. Am. Chem. Soc.
2008, 130, 2051–2061.
r
pubs.acs.org/IC
Published on Web 09/17/2010
2010 American Chemical Society