S. Roy et al. / Inorganica Chimica Acta 370 (2011) 247–253
253
According to the scheme the reduction potential from A ? B
References
and from B ? C are expected to be almost same for 2 and 3
(+0.243 V and ꢀ0.291 V for 2 and +0.241 V and ꢀ0.296 V for 3)
as the coordination environment and the electron density around
the copper center(s) responsible for reduction is almost same or
can be adopted to make it same through the Clꢀ bridge that com-
municate two Cu(II) ions in 2 and 3. Instead of MeCN in structure B
and C for 3, Clꢀ is there for complex 2. Thus a more cathodic poten-
tial is expected for C ? D reduction in case of 2 (Epc value is
ꢀ0.591 V) than 3 (Epc value is ꢀ0.491 V). Cu(ClO4)2 in organic sol-
vent display similar cyclic voltammograms [26]. The electrochem-
[1] (a) I.B. Bersuker (Ed.), The Jahn–Teller Effect, Cambridge University Press,
Cambridge, 2006.;
(b) H.A. Jahn, E. Teller, Proc. R. Soc. London, Ser. A 161 (1937) 220;
(c) H.A. Jahn, Proc. R. Soc. London, Ser. A 164 (1938) 117.
[2] (a) R. Janes, E.A. Moore (Eds.), Metal–Ligand Bonding, Open University, UK,
2004.;
(b) B.J. Hathaway, Struct. Bond. 57 (1984) 56;
(c) M.V. Veidis, G.H. Schreiber, T.E. Gough, G.J. Palenik, J. Am. Chem. Soc. 91
(1969) 1859;
(d) M.F. Belicchi, G.V. Gasparri, C. Pelizzi, P. Tarasconi, Transition Met. Chem.
10 (1985) 295.
[3] M.A. Halcrow, Dalton Trans. (2003) 4373.
[4] (a) R.G. Pearson, Proc. Nat. Acad. Sci. USA 72 (1975) 2104;
(b) D. Reinen, M. Atanasov, Chem. Phys. 136 (1989) 27.
[5] (a) F.A. Chavez, M.M. Olmstead, P.K. Mascharak, Inorg. Chem. 35 (1996) 1410;
(b) J.M. Rowland, M.L. Thornton, M.M. Olmstead, P.K. Mascharak, Inorg. Chem.
10 (1985) 295;
ical data for the reported
dicopper(II) complexes [21,22] are not available.
l-chloro and bis-l-chloro bridged
4. Conclusions
(c) J.M. Rowland, M.M. Olmstead, P.K. Mascharak, Inorg. Chim. Acta 332 (2002)
37.
Following are the summary and conclusion of the present work:
[6] S.A. Warda, Acta Crystallogr., Sect. C 54 (1998) 916.
[7] (a) W. Henke, S. Kremer, D. Reinen, Inorg. Chem. 22 (1983) 2858;
(b) A. Nielson, S. Veltze, A.D. Bond, C.J. McKenzie, Polyhedron 26 (2007) 1649.
[8] (a) L.F. Lindoy, S.E. Livingstone, Inorg. Chim. Acta 2 (2) (1968) 166;
(b) A. Mangia, M. Nardelli, C. Pelizzi, G. Pelizzi, J. Cryst. Mol. Struct. 1 (1971)
139;
(c) R. Balamurugan, M. Palaniandavar, H. Stoeckli-Evans, M. Neuberger, Inorg.
Chim. Acta 359(2006) 1103.
[9] S. Wang, Z. Wang, X. Zheng, Chem. Commun. (2009) 7372.
[10] D.D. Perrin, W.L.F. Armarego, D.R. Perrin, Purification of Laboratory Chemicals,
second ed., Pergamon Press, Oxford, UK, 1980.
ꢅ Two new chloro bridged dicopper(II) complexes, namely
[{(pmtpm)Cu(Cl)}2
l-Cl](ClO4) (2) and [{(pmtpm)Cu}2(l-Cl)2]
(ClO4)2 (3) have been characterized by means of solid and solu-
tion phase spectroscopic studies including the X-ray structures.
ꢅ Axial Cu–Cl bond elongation firmly establishes its effect on the
spectral properties. Axial Cu–Cl bond distances increases in the
order 1 < 2 < 3 (2.4394(4) Å, 2.5597(9) Å, 2.7037(12) Å for 1, 2,
3, respectively), solid state diffuse reflectance spectra display
[11] M. Hossain, M. Maji, S.K. Chattopadhyay, S. Ghosh, A.J. Blake, Polyhedron 17
(1998) 1897.
the lowest energy d–d transition (kmax
) in the sequence
[12] APEX 2 v2.1-0, Bruker AXS, Madison, WI, 2006.
[13] (a) G.M. Sheldrick, Acta Crystallogr., Sect. A 46 (1990) 467;
(b) G.M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures,
University of Göttingen, Göttingen, Germany, 1997.
[14] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837.
[15] L.J. Farrugia, J. Appl. Crystallogr. 30 (1997) 565.
[16] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Compounds, second ed., Wiley, New York, 1970.
3 < 2 < 1 (678 nm, 738 nm, 746 nm for 3, 2, 1, respectively),
and the g|| tensor components for the solid samples at 77 K
increase in the sequence 1 < 2 < 3 (2.202, 2.183, 2.166).
Acknowledgements
[17] W.J. Geary, Coord. Chem. Rev. 7 (1971) 81.
[18] A.W. Addison, T.N. Rao, J. Reedijk, J.van Rijn, G.C. Verschoor, J. Chem. Soc.,
Dalton Trans. (1984) 1349.
[19] Y. Kani, S. Ohba, S. Ito, Y. Nishida, Acta Crystallogr., Sect. C 56 (2000) e195.
[20] K.D. Karlin, J.W. McKown, J.C. Hayes, J.P. Hutchinson, J. Zubieta, Transition Met.
Chem. 9 (1984) 405.
Financial support from the Department of Science and Technol-
ogy (DST), Govt. of India (SR/S1/IC-35/2007) is gratefully acknowl-
edged. S. Roy acknowledges the support from the DST for a junior
research fellowship. We sincerely thank to Dr. T.K. Paine (IACS,
Kolkata) and Dr. M. Ray (Indian Institute of Technology, Guwahati)
for their helps with EPR spectral measurement and X-ray structure
solution, respectively. We would also like to thank Mr. Manas Bhu-
nia of IACS Kolkata for his help regarding the solid state reflectance
spectral measurement of the complexes. We sincerely acknowl-
edge the reviewers suggestions during the revision stage.
[21] (a) W.E. Marsh, K.C. Patel, W.E. Hatfield, D. Hodgson, J. Inorg. Chem. 22 (1983)
511;
(b) H.W. Lee, N. Sengottuvelan, H.J. Seo, J.S. Choi, S.K. Kang, Y.I. Kim, Bull.
Korean Chem. Soc. 29 (2008) 1711.
[22] (a) S.G.N. Roundhill, D.M. Roundhill, D.R. Bloomquist, C. Landee, R.D. Willett,
D.M. Dooley, H.B. Gray, Inorg. Chem. 18 (1979) 831;
(b) C.P. Pradeep, P.S. Zacharias, S.K. Das, J. Chem. Sci. 117 (2005) 133;
(c) S. Thakurta, P. Roy, G. Rosair, C.J. Gómez-García, E. Garribba, S. Mitra,
Polyhedron 28 (2009) 695;
(d) M.K. Urtiaga, M.I. Arriortua, R. Cortés, T. Rojo, Acta Crystallogr., Sect. C 52
(1996) 2007.
[23] (a) J.G. Gilbert, A.W. Addison, A.Y. Nazarenko, R.J. Butcher, Inorg. Chim. Acta
324 (2001) 123;
Appendix A. Supplementary material
(b) A.W. Addison, P.J. Burke, K. Henrick, T.N. Rao, Inorg. Chem. 22 (1983) 3653.
[24] A.K. Patra, M. Ray, R. Mukherjee, J. Chem. Soc., Dalton Trans. (1999) 2461.
[25] B.J. Hathaway, in: G. Wilkinson, R.D. Gillard, J.A. McCleverty (Eds.),
Comprehensive Coordination Chemistry, vol. 5, Pergamon, Oxford, 1987, p.
533.
CCDC 776513 and 776514 contain the supplementary crystallo-
graphic data for complexes 2 and 3, respectively. These data can be
obtained free of charge from The Cambridge Crystallographic Data
data associated with this article can be found, in the online version,
[26] P. Zanello, Inorganic Electrochemistry Theory Practice and Application, Royal
Society of Chemistry, Cambridge C B4 0WF, UK, 2003, p. 99.