Inorganic Chemistry
Article
(13) Selected crystallographic data for 4a: C23H23F3MoN4O5S·
CH2Cl2, M = 705.38, monoclinic, P21/c, a = 8.519(5) Å, b = 11.186(5)
Å, c = 30.020(5) Å, α = 90°, β = 93.456(5)°, γ = 90°, 100.0(1) K, V =
2856(2) Å3, Z = 4. 7087 reflections measured, 6136 independent (Rint
= 0.0470). R1 = 0.0511, wR2 = 0.1306 (all data).
(14) In these complexes it is customary to describe the structures
considering that the η3-allyl ligand occupies one coordination site, see
for example: (a) Brisdon, B. J. J. Organomet. Chem. 1977, 125, 225−
230. (b) Brisdon, B. J.; Woolf, A. A. J. Chem. Soc., Dalton Trans. 1978,
291−295.
(15) Faller, J. W.; Haitko, D. A.; Adams, R. D.; Chodosh, D. F. J. Am.
Chem. Soc. 1979, 101, 865−876.
(28) tom Dieck, H.; Friedel, J. J. Organomet. Chem. 1968, 14, 375−
385.
(29) APPEX II; Bruker AXS Inc.: Madison, WI, 2010.
(30) Sheldrick, G. M. SHELX-97 (SHELXS 97 and SHELXL 97),
Programs for Crystal Structure Analyses; University of Gottingen:
̈
Gottingen, Germany, 1996.
̈
(31) CrysAlisPro CCD, CrysAlisPro RED; Oxford Diffraction Ltd.:
Abingdon, Oxfordshire, U.K.
(32) Altomare, A.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.;
Burla, M. C.; Polidori, G.; Camalli, M. J. Appl. Crystallogr. 1994, 27,
435−436.
(33) Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112−122.
(34) Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565−566.
(35) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin,
K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega,
N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;
Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09,
Revision A.1; Gaussian, Inc.: Wallingford, CT, 2009.
(16) It has to be noted that for the starting compound [Mo(η3-
C4H7)(CO)2(N-RIm)(py-2-CHN-Ph)]OTf (2a) the NMR dynam-
ic process is not observed in CD2Cl2 at low temperature (198 K). This
behavior is similar to that of related allyldicarbonyl molybdenum(II)
complexes with diimine chelate ligands, such as 2,2′-bipyridine or 1,10-
phenanthroline, see: Davis, R.; Kane-Maguire, L. A. P. Comprehensive
Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W.,
Eds.; Pergamon: Oxford, U.K., 1982; Vol. 8, pp 1156−1159.
(17) Destabilizing interactions between the amido N lone pair and
Mo filled d orbitals (a feature imposed by their saturated, 18-electron,
nature) are responsible of the high instability of these species. See:
́
Morales, D.; Perez, J.; Riera, L.; Riera, V.; Miguel, D.; Mosquera, M. E.
G.; García-Granda, S. Chem.Eur. J. 2003, 9, 4132−4143 and
references therein.
(18) Selected crystallographic data for 4b: C24H25F3MoN4O5S, M =
634.48, monoclinic, P21/n, a = 14.315(5) Å, b = 11.167(3) Å, c =
16.931(6) Å, α = 90°, β = 108.88(2)°, γ = 90°, 100.0(1) K, V =
2560(1) Å3, Z = 4. 5532 reflections measured, 5245 independent (Rint
= 0.0401). R1 = 0.0342, wR2 = 0.0808 (all data).
(36) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem.
2003, 24, 669−681.
(37) Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A., III;
́
(19) The molecular structure of the cation of compound 4c is
displayed in the Supporting Information.
Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024−10039.
(38) (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098−3100. (b) Lee, C.;
Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785−789. (c) Becke, A. D.
J. Chem. Phys. 1993, 98, 5648−5652.
(20) (a) Heinze, K.; Jacob, V.; Feige, C. Eur. J. Inorg. Chem. 2004,
2053−2061. (b) Curtis, M. D.; Eisenstein, O. Organometallics 1984, 3,
887−895 and references therein.
(21) For complexes 2d and 2e the stability of the neutral derivatives
resulting from the deprotonation reaction (3d and 3e, respectively)
will be even lower than in the aryl derivatives 3a−c, as the lone pair on
the amide type nitrogen would not have the possibility of
delocalization towards an aryl substituent.
(22) NOESY spectra of tert-buyl derivatives 2d and 4d showed that,
as evidenced for the arylimine complexes, the η3-allyl ligand is oriented
with the open face towards the carbonyls. See the Supporting
Information for further experimental details.
(23) Selected crystallographic data for 4d: C16H12F3N2O8ReS, M =
635.54, monoclinic, P21/c, a = 8.7249(1) Å, b = 15.1603(3) Å, c =
14.7401(3) Å, α = 90°, β = 91.822(2)°, γ = 90°, 100.0(1) K, V =
1948.74(6) Å3, Z = 4. 10 569 reflections measured, 3662 independent
(Rint = 0.0431). R1 = 0.0324, wR2 = 0.0889 (all data).
(39) Hehre, W. J.; Radom, L.; Pople, J. A.; Schleyer, P. v. R. Ab Initio
Molecular Orbital Theory; Wiley: New York, 1986.
(40) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270−283.
(41) Ehlers, A. W.; Bohme, M.; Dapprich, S.; Gobbi, A.; Hollwarth,
̈
̈
A.; Jonas, V.; Kohler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G.
̈
Chem. Phys. Lett. 1993, 208, 111−114.
(42) (a) Schlegel, H. B. J. Comput. Chem. 1982, 3, 214−218.
(b) Schlegel, H. B. Theor. Chem. Acc. 1984, 66, 333−340. (c) Li, X.;
Frisch, M. J. J. Chem. Theory Comput. 2006, 2, 835−839.
(43) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys.
2010, 132, 154104-1−154104-19.
(44) Johnson, E. R.; Becke, A. D. J. Chem. Phys. 2006, 124, 174104-
1−174104-9.
(45) (a) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154−
2161. (b) Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523−
5527.
(46) McQuarrie, D. A. Statistical Mechanics; Harper and Row: New
York, 1976.
(47) (a) Reed, E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88,
899−926. (b) Weinhold, F.; Carpenter, J. E. The Structure of Small
Molecules and Ions; Naaman, R., Vager, Z., Eds.; Plenum Press: New
York, 1988; pp 227−236.
(24) Selected crystallographic data for 4e: C21H27F3MoN4O5S·
CH2Cl2, M = 685.35, triclinic, P1, a = 7.953(3) Å, b = 12.934(5) Å, c =
14.373(5) Å, α = 76.750(3)°, β = 87.895(3)°, γ = 76.286(3)°, 152(4)
K, V = 1397(1) Å3, Z = 2. 9654 reflections measured, 5059
independent (Rint = 0.0224). R1 = 0.0535, wR2 = 0.01353 (all data).
(25) (a) Leppin, J.; Foster, C.; Heinze, K. Inorg. Chem. 2014, 53,
̈
1039−1047. (b) Jung, J.; Albright, T. A.; Hoffman, D. M.; Lee, T. R. J.
Chem. Soc., Dalton Trans. 1999, 24, 4487−4494.
(26) Rikkou, M.; Manos, M.; Tolis, E.; Sigalas, M. P.; Kabanos, T. A.;
Keramidas, A. D. Inorg. Chem. 2003, 42, 4640−4649.
(27) (a) Ball, G. E.; Mann, B. E. J. Chem. Soc., Chem. Commun. 1992,
561−563. (b) Ascenso, J. R.; de Azevedo, C. G.; Calhorda, M. J.;
Carrondo, M. A. A. F. de C. T.; Costa, P.; Dias, A. R.; Drew, M. G. B.;
́
Felix, V.; Galvao, A. M.; Romao, C. C. J. Organomet. Chem. 2001, 632,
̃ ̃
197−208. (c) Friend, J.; Master, S. Y.; Preece, I.; Spencer, D. M.;
Taylor, K. J.; To, A.; Waters, J.; Whiteley, M. W. J. Organomet. Chem.
2002, 645, 218−227. (d) Alonso, J. C.; Neves, P.; Pires da Silva, M. J.;
Quintal, S.; Vaz, P. D.; Silva, C.; Valente, A. A.; Ferreira, P.; Calhorda,
́
M. J.; Felix, V.; Drew, M. G. B. Organometallics 2007, 26, 5548−5556.
2590
Inorg. Chem. 2015, 54, 2580−2590