ACS Catalysis
Page 8 of 9
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
Kwon, Y.-U., Direct Hydrogenation of Biomass-Derived Butyric Acid to
n-Butanol over a Ruthenium–Tin Bimetallic Catalyst. ChemSusChem 2014,
7, 2998-3001.
Hydrogenation over Alumina-supported Ruthenium Catalysts. Bull. Chem.
Soc. Jpn. 1984, 57, 938-943.
46. Gao, W.; Dickinson, L.; Grozinger, C.; Morin, F. G.; Reven, L.,
Self-Assembled Monolayers of Alkylphosphonic Acids on Metal Oxides.
Langmuir 1996, 12, 6429-6435.
47. Mutin, P. H.; Lafond, V.; Popa, A. F.; Granier, M.; Markey, L.;
Dereux, A., Selective Surface Modification of SiO2−TiO2 Supports with
Phosphonic Acids. Chem. Mater. 2004, 16, 5670-5675.
48. Eaton, T. R.; Boston, A. M.; Thompson, A. B.; Gray, K. A.;
Notestein, J. M., Counting Active Sites on Titanium Oxide–Silica Catalysts
for Hydrogen Peroxide Activation through InꢀSitu Poisoning with
Phenylphosphonic Acid. ChemCatChem 2014, 6, 3215-3222.
49. Thornburg, N. E.; Nauert, S. L.; Thompson, A. B.; Notestein, J. M.,
Synthesis−Structure–Function Relationships of Silica-Supported
Niobium(V) Catalysts for Alkene Epoxidation with H2O2. ACS Catal.
2016, 6, 6124-6134.
50. Holland, G. P.; Sharma, R.; Agola, J. O.; Amin, S.; Solomon, V. C.;
Singh, P.; Buttry, D. A.; Yarger, J. L., NMR Characterization of
Phosphonic Acid Capped SnO2 Nanoparticles. Chem. Mater. 2007, 19,
2519-2526.
51. Serre, C.; Auroux, A.; Gervasini, A.; Hervieu, M.; Férey, G.,
Hexagonal and Cubic Thermally Stable Mesoporous Tin(IV) Phosphates
with Acidic and Catalytic Properties. Angew. Chem., Int. Ed. 2002, 41,
1594-1597.
52. Olcay, H.; Xu, Y.; Huber, G. W., Effects of Hydrogen and Water on
the Activity and Selectivity of Acetic Acid Hydrogenation on Ruthenium.
Green Chem. 2014, 16, 911-924.
53. Chiu, C.-c.; Genest, A.; Rösch, N., Decomposition of Ethanol Over
Ru(0001): A DFT Study. Top. Catal. 2013, 56, 874-884.
54. Yang, M.-L.; Zhu, Y.-A.; Zhou, X.-G.; Sui, Z.-J.; Chen, D., First-
Principles Calculations of Propane Dehydrogenation over PtSn Catalysts.
ACS Catal. 2012, 2, 1247-1258.
55. Hook, A.; Massa, J. D.; Celik, F. E., Effect of Tin Coverage on
Selectivity for Ethane Dehydrogenation over Platinum–Tin Alloys. J. Phys.
Chem. B 2016, 120, 27307-27318.
56. Rogal, J.; Reuter, K.; Scheffler, M., Thermodynamic Stability of PdO
Surfaces. Phys. Rev. B 2004, 69, 075421.
57. Ferguson, G. A.; Vorotnikov, V.; Wunder, N.; Clark, J.; Gruchalla,
K.; Bartholomew, T.; Robichaud, D. J.; Beckham, G. T., Ab Initio
Surface Phase Diagrams for Coadsorption of Aromatics and Hydrogen on
the Pt(111) Surface. J. Phys. Chem. C 2016, 120, 26249-26258.
58. Wijzenbroek, M.; Kroes, G. J., The Effect of the Exchange-Correlation
Functional on H2 Dissociation on Ru(0001). J. Chem. Phys. 2014, 140,
084702.
59. Ferretti, O. A.; Bournonville, J. P.; Mabilon, G.; Martino, G.;
Candy, J. P.; Basset, J. M., Surface Organometallic Chemistry on Metals:
Part IV. Selective Hydrogenation of Ethyl Acetate to Ethanol on
RhSn/SiO2 Bimetallic Catalysts: A Mechanistic Study. J. Mol. Catal.
1991, 67, 283-294.
60. Olcay, H.; Xu, L.; Xu, Y.; Huber, G. W., Aqueous-Phase
Hydrogenation of Acetic Acid over Transition Metal Catalysts.
ChemCatChem 2010, 2, 1420-1424.
61. Lu, J.; Faheem, M.; Behtash, S.; Heyden, A., Theoretical
Investigation of the Decarboxylation and Decarbonylation Mechanism of
Propanoic Acid over a Ru(0001) Model Surface. J. Catal. 2015, 324, 14-
24.
62. Coloma, F.; Sepúlveda-Escribano, A.; Fierro, J. L. G.; Rodríguez-
Reinoso, F., Crotonaldehyde Hydrogenation over Bimetallic PtSn Catalysts
Supported on Pregraphitized Carbon Black. Effect of the Preparation
Method. Apply. Catal., A 1996, 148, 63-80.
63. Pouilloux, Y.; Autin, F.; Barrault, J., Selective Hydrogenation of
Methyl Oleate into Unsaturated Alcohols: Relationships between Catalytic
Properties and Composition of Cobalt–Tin Catalysts. Catal. Today 2000,
63, 87-100.
2
4. Luo, Z.; Bing, Q.; Kong, J.; Liu, J.-y.; Zhao, C., Mechanism of
Supported Ru3Sn7 Nanocluster-Catalyzed Selective Hydrogenation of
Coconut Oil to Fatty Alcohols. Catal. Sci. Technol. 2018, 8, 1322-1332.
2
5. Delhomme, C.; Weuster-Botz, D.; Kühn, F. E., Succinic Acid from
Renewable Resources as a C4 Building-Block Chemical—a Review of the
Catalytic Possibilities in Aqueous Media. Green Chem. 2009, 11, 13-26.
2
6. Pritchard, J.; Filonenko, G. A.; van Putten, R.; Hensen, E. J. M.;
Pidko, E. A., Heterogeneous and Homogeneous Catalysis for the
Hydrogenation of Carboxylic Acid Derivatives: History, Advances and
Future Directions. Chem. Soc. Rev. 2015, 44, 3808-3833.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
2
7. Mendes, M. J.; Santos, O. A. A.; Jordão, E.; Silva, A. M.,
Hydrogenation of Oleic Acid over Ruthenium Catalysts. Appl. Catal., A
2001, 217, 253-262.
2
8. Rachmady, W.; Vannice, M. A., Acetic Acid Hydrogenation over
Supported Platinum Catalysts. J. Catal. 2000, 192, 322-334.
9. Chen, L.; Zhu, Y.; Zheng, H.; Zhang, C.; Zhang, B.; Li, Y.,
2
Aqueous-Phase Hydrodeoxygenation of Carboxylic Acids to Alcohols or
Alkanes over Supported Ru Catalysts. J. Mol. Catal. A: Chem. 2011, 351,
2
3
17-227.
0. Chen, L.; Zhu, Y.; Zheng, H.; Zhang, C.; Li, Y., Aqueous-Phase
Hydrodeoxygenation of Propanoic Acid over the Ru/ZrO2 and Ru–
Mo/ZrO2 Catalysts. Appl. Catal., A 2012, 411-412, 95-104.
3
1. Chen, L.; Li, Y.; Zhang, X.; Zhang, Q.; Wang, T.; Ma, L.,
Mechanistic Insights into the Effects of Support on the Reaction Pathway
for Aqueous-Phase Hydrogenation of Carboxylic Acid over the Supported
Ru Catalysts. Appl. Catal., A 2014, 478, 117-128.
3
2. Deshpande, V. M.; Ramnarayan, K.; Narasimhan, C. S., Studies on
Ruthenium-Tin Boride Catalysts II. Hydrogenation of Fatty Acid Esters to
Fatty Alcohols. J. Catal. 1990, 121, 174-182.
33. Pouilloux, Y.; Autin, F.; Guimon, C.; Barrault, J., Hydrogenation of
Fatty Esters over Ruthenium–Tin Catalysts; Characterization and
Identification of Active Centers. J. Catal. 1998, 176, 215-224.
3
4. Pouilloux, Y.; Piccirilli, A.; Barrault, J., Selective Hydrogenation into
Oleyl Alcohol of Methyl Oleate in the Presence of RuSnAl2O3 Catalysts.
J. Mol. Catal. A: Chem. 1996, 108, 161-166.
3
5. Coq, B.; Kumbhar, P. S.; Moreau, C.; Moreau, P.; Figueras, F.,
Zirconia-Supported Monometallic Ru and Bimetallic Ru-Sn, Ru-Fe
Catalysts: Role of Metal Support Interaction in the Hydrogenation of
Cinnamaldehyde. J. Phys. Chem. 1994, 98, 10180-10188.
3
6. Jerdev, D. I.; Olivas, A.; Koel, B. E., Hydrogenation of
Crotonaldehyde over Sn/Pt(111) Alloy Model Catalysts. J. Catal. 2002,
05, 278-288.
2
37. Kennedy, G.; Melaet, G.; Han, H.-L.; Ralston, W. T.; Somorjai, G.
A., In Situ Spectroscopic Investigation into the Active Sites for
Crotonaldehyde Hydrogenation at the Pt Nanoparticle–Co3O4 Interface.
ACS Catal. 2016, 6, 7140-7147.
38. Graciani, J.; Mudiyanselage, K.; Xu, F.; Baber, A. E.; Evans, J.;
Senanayake, S. D.; Stacchiola, D. J.; Liu, P.; Hrbek, J.; Sanz, J. F.;
Rodriguez, J. A., Highly Active Copper-Ceria and Copper-Ceria-Titania
Catalysts for Methanol Synthesis from CO2. Science 2014, 345, 546-550.
3
9. Kattel, S.; Ramírez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P.,
Active Sites for CO2 Hydrogenation to Methanol on Cu/ZnO Catalysts.
Science 2017, 355, 1296-1299.
4
0. Rodríguez, J. A.; Hrbek, J., Inverse Oxide/Metal Catalysts: A Versatile
Approach for Activity Tests and Mechanistic Studies. Surf. Sci. 2010, 604,
241-244.
4
1. Pallassana, V.; Neurock, M., Reaction Paths in the Hydrogenolysis of
Acetic Acid to Ethanol over Pd(111), Re(0001), and PdRe Alloys. J. Catal.
002, 209, 289-305.
2
42. Riguetto, B. A.; Rodrigues, C. E. C.; Morales, M. A.; Baggio-
Saitovitch, E.; Gengembre, L.; Payen, E.; Marques, C. M. P.; Bueno, J.
M. C., Ru-Sn Catalysts for Selective Hydrogenation of Crotonaldehyde:
Effect of the Sn/(Ru+Sn) Ratio. Appl. Catal., A 2007, 318, 70-78.
64. Wang, S.; Vorotnikov, V.; Vlachos, D. G., Coverage-Induced
Conformational Effects on Activity and Selectivity: Hydrogenation and
Decarbonylation of Furfural on Pd(111). ACS Catal. 2015, 5, 104-112.
65. Zhao, Z.-J.; Chiu, C.-c.; Gong, J., Molecular Understandings on the
Activation of Light Hydrocarbons over Heterogeneous Catalysts. Chem.
Sci. 2015, 6, 4403-4425.
4
3. Liu, B.; Huang, T.; Zhang, Z.; Wang, Z.; Zhang, Y.; Li, J., The
Effect of the Alkali Additive on the Highly Active Ru/C Catalyst for Water
Gas Shift Reaction. Catal. Sci. Technol. 2014, 4, 1286-1292.
4
4. Venugopal, A.; Scurrell, M. S., Hydroxyapatite as a Novel Support for
Gold and Ruthenium Catalysts: Behaviour in the Water Gas Shift Reaction.
Appl. Catal., A 2003, 245, 137-147.
4
5. Toshio, O.; Tomoo, K.; Kenji, K.; Makoto, M.; Yukio, Y., Effects of
Dispersion in Carbon Monoxide Adsorption and Carbon Monoxide
8
ACS Paragon Plus Environment