cochleamycin A if we can effectively control the E/Z
stereochemistry of 1,3-diene. Previously, we reported on a
tandem dienyne ring-closing metathesis (RCM) of alkynyl
silaketals to generate bicyclic siloxanes9 in the presence of
Grubbs NHC-ruthenium catalyst.10 Removal of the silicon
tether through protodesilylation allowed for the generation
of stereochemically defined 1,4-substituted (E,Z)-1,3-dienes.
The group selectivity (ring closure from right to left vs that
from left to right) in tandem RCM to obtain only the desired
regioisomer would be achieved by differential substitution
on the alkene as demonstrated in the construction of the
carbon framework of tatrolon B.11 Herein, we report a formal
total synthesis of (-)-cochleamycin A by intercepting the
Roush advanced synthetic intermediate.
(triethylsilyl)acetylide,14 which afforded the known 3-trieth-
ylsilylpropynal15 in 78% yield (Scheme 2). This aldehyde
Scheme 2
Scheme 1. Retrosynthetic Analysis for (-)-Cochleamycin A
was then subjected to double Michael addition of 1,3-
propanedithiol in the presence of basic alumina to give
dithiane aldehyde 8 in 85% yield.16 Asymmetric allylation
utilizing the pseudoephedrine-derived strained silacycle 9
developed by Leighton and co-workers afforded homoallylic
alcohol 10 in 74% yield and 77% enantiomeric excess (ee).17
Many other conventional aymmetric allylation protocols
including Brown’s allylation,18 Roush allylation,19 Keck
(12) For tandem enyne RCM, see: (a) Grimm, J. B.; Otte, R. D.; Lee,
D. J. Organomet. Chem. 2005, 690, 5508. (b) Boyer, F.-D.; Hanna, I.;
Ricard, L. Org. Lett. 2004, 6, 1817. (c) Hoye, T. R.; Jeffrey, C. S.;
Tennakoon, M. A.; Wang, J.; Zhao, H. J. Am. Chem. Soc. 2004, 126, 10210.
(d) Huang, J.; Xiong, H.; Hsung, R. P.; Rameshkumar, C.; Mulder, J. A.;
Grebe, T. P. Org. Lett. 2002, 4, 2417. (e) Boyer, F.-D.; Hanna, I.; Ricard,
L. Org. Lett. 2001, 3, 3095. (f) Timmer, M. S. M.; Ovaa, H.; Filippov,
D. V.; van der Marel, G. A.; van Boom, J. H. Tetrahedron Lett. 2001, 42,
8231. (g) Choi, T. L.; Grubbs, R. H. Chem. Commun. 2001, 2648. (h)
Chatterjee, A. K.; Morgan, J. P.; Scholl, M.; Grubbs, R. H. J. Am. Chem.
Soc. 2000, 122, 3783. (i) Kim, S. H.; Zuercher, W. J.; Bowden, N. B.;
Grubbs, R. H. J. Org. Chem. 1996, 61, 1073. (j) Kim, S. H.; Bowden, N.;
Grubbs, R. H. J. Am. Chem. Soc. 1994, 116, 10801. (k) Middleton, M. D.;
Peppers, B. P.; Diver, S. T. Tetrahedron 2006, 62, 10528. (l) Krishna, P. R.;
Narasingam, M. Tetrahedron Lett. 2007, 48, 8721. (m) Kim, B. G.; Snapper,
M. L. J. Am. Chem. Soc. 2006, 128, 52.
As shown in the retrosynthetic analysis in Scheme 1,
ꢀ-keto ester 2, an advanced intermediate employed in the
Roush total synthesis of (+)-cochleamycin A,6 would be
derived from dienediol precursor 3. The tandem RCM12 of
silaketal 4 followed by desilylation would deliver dienediol
3. Silaketal 4 could be obtained from the base-catalyzed
stepwise alcoholysis of cyclopentyltrialkynylsilane 6 with
alcohols 5 and 7. The key intermediate 5 was prepared by
utilizing the anion relay chemistry developed by Smith and
co-workers.13 A general route to a precursor of 5 was
developed starting with the formylation of the lithium
(13) (a) Smith, A. B.; Xian, M. J. Am. Chem. Soc. 2006, 128, 66. (b)
Smith, A. B.; Adams, C. M. Acc. Chem. Res. 2004, 37, 365. (c) Smith,
A. B.; Boldi, A. M. J. Am. Chem. Soc. 1997, 119, 6925. (d) Smith, A. B.;
Wuest, W. M. Chem. Commun. 2008, 45, 5883. (e) Smith, A. B.; Kim,
D.-S. Org. Lett. 2007, 9, 3311.
(14) Journet, M.; Cai, D; DiMichele, L. M.; Larsen, R. D. Tetrahedron
Lett. 1998, 39, 6427.
(15) Bonazzi, S.; Gu¨ttinger, S.; Zemp, I.; Kutay, U.; Gademann, K.
Angew. Chem., Int. Ed. 2007, 46, 8707.
(16) For syntheses of 1,3-dithianes by double conjugate addition, see:
(a) Ranu, B. C.; Bhar, S.; Chakraborti, R J. Org. Chem. 1992, 57, 7349.
(b) Gaunt, M. J.; Sneddon, H. F.; Hewitt, P. R.; Orsini, P.; Hook, D. F.;
Ley, S. L. Org. Biomol. Chem. 2003, 1, 15. (c) Xu, C.; Bartley, J. K.;
Enache, D. I.; Knight, D. W.; Lunn, M.; Lok, M.; Hutchings, G. J.
Tetrahedron Lett. 2008, 49, 2454. (d) Kuroda, H.; Tomiro, I.; Endo, T.
Synth. Commun. 1996, 26, 1539.
(8) For review on enyne metathesis, see: (a) Giessert, A. J.; Diver, S. T.
Chem. ReV. 2004, 104, 1317. (b) Poulsen, C. S.; Madsen, R. Synthesis 2003,
1. (c) Mori, M. Top. Organomet. Chem. 1998, 1, 133. (d) Mori, M. In
Handbook of Metathesis; Grubbs, R. H., Ed.; Wiley-VCH: Weinheim, 2003;
Vol. 2, pp 176-204.
(9) Grimm, J. B.; Otte, R. D.; Lee, D. J. Organomet. Chem. 2005, 690,
5508.
(17) Kinnaird, J. W. A.; Ng, P. Y.; Kubota, K.; Wang, X.; Leighton,
J. L. J. Am. Chem. Soc. 2002, 124, 7920.
(10) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999,
1, 953.
(18) Racherla, U. S.; Brown, H. C. J. Org. Chem. 1991, 56, 401.
(19) Roush, W. R.; Walts, A. E.; Hoong, L. K. J. Am. Chem. Soc. 1985,
107, 8186.
(11) Kim, Y. J.; Lee, D. Org. Lett. 2006, 8, 5219.
Org. Lett., Vol. 11, No. 13, 2009
2917