4102
S. M. A. Rahman et al. / Bioorg. Med. Chem. 20 (2012) 4098–4102
is more pronounced for Rp isomers. Considering all the results we
assume that cationic Rp-PS-ODNs might be an interesting candi-
date for DNA based technologies such as DNA microarray, DNA
nanostructures and antigene technologies.
(0.40 nmol) in 50 mM Tris–HCl buffer (pH 7.5) containing 10 mM
MgCl2. The reaction mixture was incubated at 37 °C for 15 min
and heated to 90 °C for 5 min to inactivate the nuclease. The
amount of intact ODN was quantified by HPLC.
4. Experimental section
4.1. General information
Acknowledgments
A part of this work was supported by the bilateral joint projects
conducted by Japan Society of Promotion of Science (JSPS) and Uni-
versity Grants Commission of Bangladesh (UGC)
Melting points are uncorrected. 1H NMR (400 MHz) and 13C NMR
(100 MHz) were recorded on a JEOL JNM-ECS-400 spectrometer.
Chemical shifts are reported in parts per million downfield from
residual solvent of D2O (4.79 ppm) for 1H NMR or methanol-d4
(49.0 ppm) for 13C NMR. Mass spectra were measured on JEOL
JMS-700 mass spectrometers. MALDI-TOF mass spectra were re-
corded on a Bruker Daltonics Autoflex II TOF/TOF mass spectrome-
ter. For high performance liquid chromatography (HPLC), Shimadzu
LC-10ATVP, SPD-10AVP and CTO-10VP were used. Thermal denatur-
ation experiments were carried out on Shimadzu UV-1650
and UV-1800 spectrophotometers equipped with a Tm analysis
accessory. Oligonucleotide 1 was purchased from GeneDesign Inc.
Aminoalkylating reagents were purchased (ethyl and propyl) or
synthesized (others except for 6-bromohexylammonium bro-
mide)39–41 as the respective ammonium bromides.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Crooke, S. T. Annu. Rev. Med. 2004, 55, 61.
2. Buchini, S.; Leumann, C. J. Curr. Opin. Chem. Biol. 2003, 7, 717.
3. Novina, C. D.; Sharp, P. A. Nature 2004, 430, 161.
4. Yan, H. Science 2004, 306, 2048.
5. Taylor, M. F.; Wiederholt, K.; Sverdrup, F. Drug Discovery Today 1999, 4, 562.
6. Stein, C. A.; Cheng, Y.-C. Science 1993, 261, 1004.
7. Eckstein, F. Annu. Rev. Biochem. 1985, 54, 367.
8. Marwick, C. J. Am. Med. Assoc. 1998, 280, 871.
9. Yamamoto, T.; Nakatani, M.; Narukawa, K.; Obika, S. Future Med. Chem. 2011, 3,
339.
10. Vekhoff, P.; Halby, L.; Oussedik, K.; Dallavalle, S.; Merlini, L.; Mahieu, C.;
Lansiaux, A.; Bailly, C.; Boutorine, A.; Pisano, C.; Giannini, G.; Alloatti, D.;
Arimondo, P. B. Bioconjugate Chem. 2009, 20, 666.
11. Lee, J. H.; Wong, N. Y.; Tan, L. H.; Wang, Z.; Lu, Y. J. Am. Chem. Soc. 2010, 132,
8906.
12. Stein, C. A.; Subasinghe, C.; Shinozuka, K.; Cohen, J. S. Nucleic Acids Res. 1988,
16, 3209.
13. Clark, C. L.; Cecil, P. K.; Singh, D.; Gray, D. M. Nucleic Acids Res. 1997, 25, 4098.
14. Xodo, L.; Alunni-Fabbroni, M.; Manzini, G.; Quadrifoglio, F. Nucleic Acids Res.
1994, 22, 3322.
15. Kim, S.-G.; Tsukahara, S.; Yokoyama, S.; Takaku, H. FEBS. Lett. 1992, 314, 29.
16. Haginoya, N.; Ono, A.; Nomura, Y.; Ueno, Y.; Matsuda, A. Bioconjugate Chem.
1997, 8, 271.
17. Ueno, Y.; Mikawa, M.; Matsuda, A. Bioconjugate Chem. 1998, 9, 33.
18. Matsukura, M.; Okamoto, T.; Miike, T.; Sawai, H.; Shinozuka, K. Biochem.
Biophys. Res. Commun. 2002, 293, 1341.
19. Moriguchi, T.; Sakai, H.; Suzuki, H.; Shinozuka, K. Chem. Pharm. Bull. 2008, 56,
1259.
20. Lin, K.-Y.; Jones, R. J.; Matteucci, M. J. Am. Chem. Soc. 1995, 117, 3873.
21. Lin, K.-Y.; Matteucci, M. D. J. Am. Chem. Soc. 1998, 120, 8531.
22. Venkiteswaran, S.; Vijayanathan, V.; Shirahata, A.; Thomas, T.; Thomas, T. J.
Biochemistry 2005, 44, 303.
23. Winkler, J.; Saadat, K.; Díaz-Gavilán, M.; Urban, E.; Noe, C. R. Eur. J. Med. Chem.
2009, 44, 670.
24. Morvan, F.; Debart, F.; Vasseur, J.-J. Chem. Biodivers. 2010, 7, 494.
25. Michel, T.; Debart, F.; Heitz, F.; Vasseur, J.-J. ChemBioChem 2005, 6, 1254.
26. Fraley, A. W.; Pons, B.; Dalkara, D.; Nullans, G.; Behr, J.-P.; Zuber, G. J. Am. Chem.
Soc. 2006, 128, 10763.
27. Fidanza, J. A.; Ozaki, H.; McLaughlin, L. W. J. Am. Chem. Soc. 1992, 114, 5509.
28. Chen, M.; Gothelf, K. V. Org. Biomol. Chem. 2008, 6, 908.
29. The cleavage products were characterized by MALDI-TOF mass data. The
alkylation may occur at N7 of guanine residue resulting in cleavage of sugar-
base bond.
4.2. Synthesis of 6-bromohexylammonium bromide
6-Aminohexanol (500 mg, 4.27 mmol) was slowly added to a stir-
ring 48% hydrogen bromide solution(5.1 mL) at 0 °C and the resulting
mixture was stirred at 80 °C for 20 h. The mixture was concentrated
and crystallized from toluene/ethanol = 50/1 to give 6-bromohexy-
lammonium bromide (674 mg, 2.6 mmol, 61%) as a white solid.
Mp 130–133 °C (toluene/ethanol = 50/1). 1H NMR (400 MHz,
D2O): d 1.37–1.48 (4H, m), 1.61–1.68 (2H, m), 1.82–1.87 (2H, m),
2.96 (2H, t, J = 8 Hz), 3.48 (2H, t, J = 7 Hz). 13C NMR (100 MHz,
CD3OD): d 26.6, 28.4, 28.6, 33.6, 34.2, 40.6. MS (FAB) m/z 180
(M–Br–). HRMS (FAB): Calcd for C6H15NBr (M–Br–): 180.0382.
Found: 180.0395.
4.3. Synthesis of aminoalkylated PS-ODNs
Each aminoalkylation reagent (1.0 M, 2
ODN 2–6) or H2O (for ODN 7–10) was added to a solution of ODN 1
(10 nmol) in 22 mM HEPES buffer (18 L, pH 6.5) and the reaction
mixture was incubated at 45 °C for 24 h. After completing the reac-
tion, ODN was precipitated by adding ethanol (100 L). The mix-
lL, 2 lmol) in DMF (for
l
l
ture was kept at 0 °C for 15 min, centrifuged at 13,200 rpm for
15 min at 4 °C, and the resulting supernatant solution was re-
moved. The obtained ODN was purified by RP-HPLC and character-
ized by MALDI-TOF mass spectrometry.
30. The Tm values of the ODNs were summarized in ESI.
31. The polypyrimidine ODN was selected so that it also can be used both for
duplex and triplex studies.
32. Burgers, P. M. J.; Eckstein, F. Biochemistry 1979, 18, 592.
33. Kamisetty, N. K.; Pack, S. P.; Nonogawa, M.; Devarayapalli, K. C.; Watanabe, S.;
Kodaki, T.; Makino, K. Anal. Bioanal. Chem. 2007, 387, 2027.
34. Jaroszewski, J. W.; Syi, J.-L.; Maizel, J.; Cohen, J. S. Anti-Cancer Drug Des. 1992, 7,
253.
35. Egli, M.; Portmann, S.; Usman, N. Biochemistry 1996, 35, 8489.
36. Sundaralingam, M.; Pan, B. Biophys. Chem. 2002, 95, 273.
37. Egli, M.; Tereshko, V.; Teplova, M.; Minasov, G.; Joachimiak, A.; Sanishvili, R.;
Weeks, C. M.; Miller, R.; Maier, M. A.; An, H.; Cook, D. P.; Manoharan, M.
Biopolymers 1998, 48, 234.
38. Ouameur, A. A.; Tajmir-Riahi, H-A. J. Biol. Chem. 2004, 279, 42041.
39. Hedrera, M. E.; Perillo, I. A. J. Heterocycl. Chem. 2000, 37, 1431.
40. Piper, J. R.; Stringfellow, C. R., Jr.; Elliott, R. D.; Johnston, T. P. J. Med. Chem. 1969,
12, 236.
4.4. Preparation of enzymatically digested ODNs
Crotalus Admanteus Venom Phosphodiesterase (CAVP, Pharmacia
Biotech) (1.3
l l l
g for 10 and 60Rp, 4.5 g for 20Sp, 4.1 g for 20Rp,
1.3 lM ODN (5.0 nmol
l
g for 60Sp) was added to a solution of 3.3
for 10 and 60R, 4.5 nmol for 20Sp, 4.1 nmol for 20Rp, 5.1 nmol for
60Sp) in 25 mM Tris–HCl buffer (pH 8.5 for 10, 60, pH 7.5 for 20) con-
taining 4.0 mM MgCl2. The reaction mixture was incubated at 37 °C
for 30 min and heated to 90 °C for 30 min to inactivate the nuclease.
The mixture was concentrated and purified by RP-HPLC.
4.5. Evaluation of nuclease stability
41. McElvain, S. M.; Bannister, L. W. J. Am. Chem. Soc. 1954, 76, 1126.
Crotalus Admanteus Venom Phosphodiesterase (CAVP, Pharma-
cia Biotech) (0.40 lg) was added to a solution of 3.3 lM ODN