catenanes16 and other mechanical devices. Moreover, the
unique capability of disulfide bonds to be cleaved by reducing
thiols might open access to an external stimuli-controlled
release of the included guest, as demonstrated very recently in
b-cyclodextrin disulfide-cross-linked polymeric nanocapsules.17
The authors thank Lucie Bednarova for measurements of
´ ´
CD spectra. Financial support from the Institute (Z40550506)
and grant agencies (GA AVCR, IAA400550810; GA CR,
203/06/1550; MSMT OC172 and 0021620857) is greatly
acknowledged.
Notes and references
z Crystal data for dimer 8: C72H114O54S6ꢄ(C3H6O)ꢄ11(H2O);
Mr = 2292.25; rcalcd = 1.462 g cmꢂ3; crystal dimensions 0.4 ꢃ 0.3 ꢃ
0.1 mm; triclinic, P1 (no. 1); a = 13.7086(2) A, b = 13.7560(2) A,
Fig. 2 CD spectrum of duplex 8 recorded in aqueous solution at 1.5 mM
concentration. Values of De have been normalized to one disulfide
bond.
c
= 16.0247(2) A; a = 81.3890(10)1, b = 81.6130(10)1,
g = 61.0206(7)1; V = 2604.30(6) A3; Z = 1, T = 150 K, 73 040
reflections collected, 20 107 unique (Rint = 0.044). R = 0.056,
wR(F2) = 0.157; PLATON/SQUEEZE18 tool was used to correct
the data of 8 for the presence of the disordered solvent molecules.
More details can be found in ESIw.
Table 1 Thermodynamic parameters of the complex formation of 8
with a,o-alkanediols and 1-undecanol as determined by ITC in
aqueous solutionsa
1 Carbon Nanotubes, ed. A. Jorio, G. Dresselhaus, M. S. Dresselhaus,
Springer, Berlin, Heidelberg, 2008.
2 D. T. Bong, T. D. Clark, J. R. Granja and M. R. Ghadiri, Angew.
Chem., Int. Ed., 2001, 40, 988.
3 D. Pasini and M. Ricci, Curr. Org. Synth., 2007, 4, 59–80.
4 N. Sakai, J. Mareda and S. Matile, Acc. Chem. Res., 2005,
38, 79.
5 A. Ikeda and S. Shinkai, J. Chem. Soc., Chem. Commun., 1994,
2375.
6 (a) G. V. Zyryanov and D. M. Rudkevich, J. Am. Chem. Soc.,
2004, 126, 4264; (b) V. G. Organo, A. V. Leontiev, V. Sgarlata, H.
V. R. Dias and D. M. Rudkevich, Angew. Chem., Int. Ed., 2005, 44,
3043.
TDS1/
Guest
K/Mꢂ1
DH1/kcal molꢂ1 kcal molꢂ1
OH(CH2)11OH (4.88 ꢁ 0.09) ꢃ 105 ꢂ13.5 ꢁ 0.2
OH(CH2)12OH (6.13 ꢁ 0.14) ꢃ 106 ꢂ15.2 ꢁ 0.2
OH(CH2)13OH (2.08 ꢁ 0.05) ꢃ 107 ꢂ15.4 ꢁ 0.2
CH3(CH2)10OH (2.99 ꢁ 0.11) ꢃ 106 ꢂ13.7 ꢁ 0.2
ꢂ5.7 ꢁ 0.2
ꢂ6.0 ꢁ 0.2
ꢂ5.4 ꢁ 0.2
ꢂ4.9 ꢁ 0.2
a
All titrations were carried out at 298.15 K using ten injections. Each
titration was repeated three times and the raw data were averaged
prior to the fitting procedure.9 Experimental details including selected
thermograms can be found in ESIw.
7 T. Gottschalk, B. Jaun and F. Diederich, Angew. Chem., Int. Ed.,
2007, 46, 260.
8 A. Harada, J. Li and M. Kamachi, Nature, 1993, 364, 516.
In conclusion, we have prepared a duplex a-cyclodextrin
composed of two parent a-cyclodextrin macrocycles triply
connected with disulfide bonds. The demonstrated high
efficiency of the template-free dimerization step (Z 94%) is
presumed to be the consequence of the dynamic nature of the
disulfide bond allowing the convergence of all competing
intermediates into the duplex 8, and calling for a much
broader exploitation in the design of organic nanotubes. The
tubular species described herein is distinguished by chemical
homogeneity, precisely defined length, rigid structure and, in
contrast to other5–7,9,12 covalently bonded tubular molecules
constructed from macrocyclic building blocks, very small
voids in its walls. The long cavity of the duplex 8 allows the
inclusion of alkyl chains with high binding constants (up to
2.1 ꢃ 107 Mꢂ1 for 1,13-tridecanediol) and may thus find
applications in supramolecular self-assembly of rotaxanes,
9 L. Kumprecht, M. Budesı
I. Cısarova, J. Brynda, V. Herzig, P. Koutnı
T. Kraus, J. Org. Chem., 2009, 74, 1082.
´
nsky
´
, J. Vondra
´
sek, J. Vymetal, J. Cerny
´ ,
´
´
´
k, J. Zavada and
´
10 C. C. Ling, A. W. Coleman and M. Miocque, Carbohydr. Res.,
1992, 223, 287.
11 R. Breslow and S. Chung, J. Am. Chem. Soc., 1990, 112, 9659.
12 D. Q. Yuan, K. Koga, I. Kouno, T. Fujioka, M. Fukudome and
K. Fujita, Chem. Commun., 2007, 828.
13 P. T. Corbett, J. Leclaire, L. Vial, K. R. West, J. L. Wietor, J. K.
M. Sanders and S. Otto, Chem. Rev., 2006, 106, 3652.
14 W. Saenger, J. Jacob, K. Gessler, T. Steiner, D. Hoffmann,
H. Sanbe, K. Koizumi, S. M. Smith and T. Takaha, Chem. Rev.,
1998, 98, 1787.
15 M. V. Rekharsky and Y. Inoue, Chem. Rev., 1998, 98, 1875.
16 G. Wenz, B. H. Han and A. Muller, Chem. Rev., 2006, 106, 782.
17 L. C. Jones, W. M. Lackowski, Y. Vasilyeva, K. Wilson and
V. Chechik, Chem. Commun., 2009, 1377.
18 A. L. Spek, PLATON—A Multipurpose Crystallographic Tool,
Utrecht University, Utrecht, The Netherlands, 2008.
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 3557–3559 | 3559