Redox Potentials of Guanosine and Guanine
J. Phys. Chem. B, Vol. 108, No. 40, 2004 15899
References and Notes
TABLE 2: Ionization Potentials, Deprotonization Energies,
and Hydratation Free Energies for Guanine (G) and
Guanosine (Gs) Determined at Three Theoretical Levels: (I)
B3LYP/6-31G**; (II) B3LYP/6-31++G**; (III)
RIMP2/cc-pVDZ
(1) Hush, N. S.; Cheung, A. S. Chem. Phys. Lett. 1975, 34, 11-13.
(2) Sugiyama, H.; Saito, I. J. Am. Chem. Soc. 1996, 118, 7063-7068.
(3) Jovanovic, S. V.; Simic, M. G. J. Phys. Chem. 1986, 90, 974-
978.
energy/eV
(4) Steenken, S.; Jovanovic, S. V. J. Am. Chem. Soc. 1997, 119, 617-
618.
base level IPa
DPb ∆Ghyd c IP + DP IP + DP + ∆Ghyd
(5) Prat, F.; Houk, K. N.; Foote, C. S. J. Am. Chem. Soc. 1998, 120,
845-846.
(6) Lewis, F. D.; Liu, X.; Liu. J.; Hayes, R. T.; Wasielewski, M. R. J.
G
I
7.32 10.59
7.65 10.28
7.88 10.65
7.18 10.68
7.51 10.37
7.61 11.09
0.13
17.91
17.93
18.53
17.86
17.88
18.70
18.04
18.06
18.66
18.05
18.07
18.89
II
III
I
II
III
Am. Chem. Soc. 2000, 122, 12037-12038.
Gs
0.19
(7) (a) Nakatani, K.; Dohno, C.; Saito, I. J. Am. Chem. Soc. 2000,
122, 5893-5894. (b) Sistare, M. F.; Codden, S. J.; Heimlich, G.; Thorp,
H. H. J. Am. Chem. Soc. 2000, 122, 4742-4749.
(8) Steenken, S. Chem. ReV. 1989, 89, 503-520.
a Difference between energies of cation radical and parent neutral
system. b Difference between energies of deprotonated neutral radical
and respective cation radical. c Difference in hydration-free energies
between deprotonated neutral radical and parent neutral system.
(9) (a) Burrows, C. J.; Muller, J. G. Chem. ReV. 1998, 98, 1109-1151.
(b) Kawanishi, S.; Hiraku, Y.; Oikawa, S. Mutat. ReV. 2001, 488, 65-76.
(10) Dryhurst, G.; Pace, G. J. Electrochem. Soc. 1970, 117, 1259-1264.
(11) Dryhurst, G. Anal. Chim. Acta 1971, 57, 137-149.
(12) Goyal, R. N.; Dryhurst, G. J. Electroanal. Chem. 1982, 135, 75-
91.
(13) Subramanian, P.; Dryhurst, G. J. Electroanal. Chem. 1987, 224,
137-162.
(14) Reynisson, J.; Steenken, S. Phys. Chem. Chem. Phys. 2002, 4, 527-
532.
(15) Candeias, L. P.; Steenken, S. J. Am. Chem. Soc. 1989, 111, 1094-
1099.
(16) Shafirovich, V.; Dourandin, A.; Luneva, N. P.; Geacintov, N. E. J.
Phys. Chem. B 2000, 104, 137.
(17) Weatherly; S. C.; Yang, I. V.; Thorp, H. H. J. Am. Chem. Soc.
2001, 123, 1236-1237.
(18) (a) Kino, K.; Saito, I.; Sugiyama, H. J. Am. Chem. Soc. 1998, 120,
7373-7374. (b) Duarte, V.; Muller, J. G.; Burrows, C. J. Nucleic Acids
Res. 1999, 27, 496-502. (c) Doddridge, Z. A.; Cullis, P. M.; Jones, G. D.
D.; Malone, M. E. J. Am. Chem. Soc. 1998, 120, 10998-10999.
(19) Choi, S.; Cooley, R. B.; Hakemian, A. S.; Larrabee, Y. C.; Bunt,
R. C.; Maupas, S. D.; Muller, J. G.; Burrows, C. J. J. Am. Chem. Soc.
2004, 126, 591-598.
Figure 2. Comparison of the one-electron redox potential of Gs relative
to G with the calculated difference in IP, the sum IP + DP and the
sum IP + DP + ∆Ghyd at the B3LYP/6-31G** or B3LYP/6-31++G**
level (dotted line) or the RIMP2/cc-pVDZ level (full line).
for G, cf. Figure 2, showing the diagram of energy changes.
The difference ∆Ghyd in the hydration free energy between
G(-H)• and G was found to exhibit a similar trend as DP, cf.
Table 2. As it can be seen from the last column of Table 1, the
inclusion of ∆Ghyd changes the order of total energies (IP +
DP). Already at the simplest level (B3LYP/6-31G**) the
difference between Gs and G becomes positive (0.01 eV), and
when passing to the correlated value, it is significantly enlarged
(0.23 eV) and it exceeds the difference in the one-electron redox
(20) Johnston, D. H.; Thorp, H. H. J. Phys. Chem. 1996, 100, 13837-
13843.
(21) Johnston, D. H.; Glasgow, K. C.; Thorp, H. H. J. Am. Chem. Soc.
1995, 117, 8933-8938.
(22) Sistare, M. F.; Holmberg, R. C.; Thorp, H. H. J. Phys. Chem. B
1999, 103, 10718-10728.
(23) Johnston, D. H.; Cheng, C.-C.; Campbell, K. J.; Thorp, H. H. Inorg.
Chem. 1994, 33, 6388-6390.
(24) Langmaier, J.; Samec, Z.; Samcova´, E. Electroanalysis 2003, 15,
1555-1560.
(25) Janik, B.; Elving, P. J. J. Am. Chem. Soc. 1970, 92, 235-243.
(26) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K.
N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels,
A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;
Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,
P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson,
B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03,
revision B.02; Gaussian, Inc.: Pittsburgh, PA, 2003.
0
potentials (∆E1 ≈ 0.13 V) at the correlated level, cf. Figure 2.
Conclusions
The sugar moiety has an appreciable effect on both the one-
electron redox potential and the rate of oxidation of guanine
species. Redox potentials for the first electron uptake follow
the sequence G < Gs ≈ dG ≈ dGMP, indicating that guanine
itself is oxidized most easily. This sequence is expressed in the
rate constant, which apparently follows the expected driving
force dependence. Ab initio molecular orbital calculations of
the energy changes in PCET from Gs or G suggest that the
difference between the one-electron redox potentials of Gs and
G (ca. 0.13 V) originates partly from the higher energy of proton
dissociation from the cation radical Gs•+ and partly from the
higher difference in the hydration energy between the depro-
tonated radical Gs(-H)• and the parent Gs, which compensate
for the lower ionization potential of Gs compared to that of G.
(27) Ahlrichs, R.; Bar, M.; Haser, M.; Ehring, M.; Kolmel, C. Chem.
Phys. Lett. 1989, 162, 165.
(28) Weigend, F.; Haser, M. Theor. Chem. Acc. 1997, 97, 331.
(29) Creutz, J.; Sutin, N. Proc. Natl. Acad. Sci. U. S. A. 1975, 72, 2858-
2862.
(30) Kim, J. Bull. Korean Chem. Soc. 2000, 21, 709-711.
(31) Trasatti, S. Pure Appl. Chem. 1986, 58, 955-966.
(32) Wetmore, S. D.; Boyd, R. J.; Eriksson, L. A. J. Phys. Chem. B,
Acknowledgment. Financial support of this work by Grant
Agency of the Czech Republic, Grant No. 203/01/0653, is
gratefully acknowledged.
1998, 102, 9332-9343.