1768
M. Kurosu, M. Lorca / Tetrahedron Letters 43 (2002) 1765–1769
Acknowledgements
The tendency in the diastereoselectivities observed in
the allylation reactions of a series of chiral aldehydes
using BINOL–Zr(OtBu)4 clearly indicates that it is
difficult to attain high 1,3-syn selectivity except in the
case of entries 3 and 11 in Table 3. Because of the
higher oxophilicity of the BINOL–Zr complex the reac-
tion rate was far greater than with the BINOL–Ti
complexes.9 This catalyst causes a significant interac-
tion with the coordinative oxygen atoms at the b-posi-
tion of aldehydes to increase the chelation controlled
allylation products.22
This work was supported by The Florida State Univer-
sity. Dr. Alan Marshall and Mr. Robert Bossio are
gratefully acknowledged for high-resolution mass spec-
tral measurements.
References
1. (a) Heachcock, C. H. In Asymmetric Synthesis; Morison,
J. D., Ed.; Academic Press: New York, 1984; Vol. 3, p.
111; (b) Evans, D. A.; Nelson, J. V.; Taber, T. R. Top.
Stereochem. 1982, 13, 1; (c) Mukaiyama, T. Org. React.
(N.Y.) 1982, 28, 203.
2. Brown, H. C.; Randad, R. S.; Bhat, K. S.; Zaidlewiez,
M.; Racherla, U. S. J. Am. Chem. Soc. 1990, 112, 2389.
3. Roush, W. R.; Hoong, L. K.; Palmer, M. A. J.; Park,
J.-C. J. Org. Chem. 1990, 55, 4109.
4. Other useful chiral allylating reagents, see: (a) Riediker,
M.; Duthaler, R. O. Angew. Chem., Int. Ed. Engl. 1989,
28, 494; (b) Hafner, A.; Duthaler, R. O.; Marti, R.; Rihs,
J.; Rothe-Streit, P.; Schwarzenbach, F. J. Am. Chem. Soc.
1992, 92, 807; (c) Duthaler, R. O.; Hafner, A. Chem. Rev.
1992, 92, 807.
In conclusion, an expeditious catalytic allylation of
aldehydes with BINOL–Zr(OtBu)4 is reported. The
reaction proceeds within a few hours at −20°C and the
ees of the homoallylic alcohols are greater than 90%.
The ees of the products can be enhanced via tandem
catalytic asymmetric allylation–Oppenauer reactions.
These tandem reactions are especially useful for reactive
aldehydes. The asymmetric allylation with BINOL–
Zr(OtBu)4 may be useful for a variety of protected
chiral b-hydroxy aldehydes. However, the choice of
protecting groups is crucial for inducing useful levels of
diastereoselectivity.
Representative procedure for the synthesis of (R)-undec-
1-en-4-ol (entry 3 in Table 1). Zr(OtBu)4 was purchased
from either Aldrich or Strem and stored as a 0.55 M
toluene solution. This was stored in a desiccator over
KOH pellets. To a stirred mixture of (S)-BINOL (892
5. Roush, W. R.; Hoong, L. K.; Palmer, M. A.; Staub, J.
A.; Palkowitz, A. D. J. Org. Chem. 1990, 55, 4117.
6. (a) Furuta, K.; Miwa, Y.; Iwanaga, K.; Yamamoto, H. J.
Am. Chem. Soc. 1988, 54, 1481; (b) Furuta, K.; Mouri,
M.; Yamamoto, H. Synlett 1991, 561; (c) Marshall, J. A.;
Tang, Y. Synlett 1992, 653; (d) Ishihara, K.; Mouri, M.;
Gao, Q.; Maruyama, T.; Furuta, K.; Yamamoto, H. J.
Am. Chem. Soc. 1993, 115, 11490; (e) Denmark, S. E.;
Coe, D. M.; Pratt, N. E.; Griedel, B. D. J. Org. Chem.
1994, 59, 6161; (f) Kobayashi, S.; Nishio, K. J. Am.
Chem. Soc. 1995, 117, 6392; (g) Iseki, K.; Mizuno, S.;
Kuroki, Y.; Kobayashi, Y. Tetrahedron 1999, 55, 977; (h)
Nakajima, M.; Saito, M.; Shiro, M.; Hashimoto, S. J.
Am. Chem. Soc. 1998, 120, 641; (i) Chataigner, I.;
Piarulli, U.; Gennari, C. Tetrahedron Lett. 1999, 120,
6419; (j) Hanawa, H.; Kii, S.; Asao, N.; Maruoka, K.
Tetrahedron Lett. 2000, 41, 5543 and references cited
therein.
7. (a) Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am.
Chem. Soc. 1993, 115, 8268; (b) Keck, G. E.; Geraci, L.
S. Tetrahedron Lett. 1993, 34, 7827; (c) Yu, C.-M.; Choi,
H.-S.; Yoon, S.-K.; Jung, W.-H. Synlett 1997, 889.
8. Costa, A. L.; Piazza, M. G.; Tagliavini, E.; Trombini, C.;
Umani-Ronchi, A. J. Am. Chem. Soc. 1993, 115, 7001.
9. Modified Keck’s protocols (BINOL-Ti(OR)4=2:1) are
effective in allylations of aldehydes with b-substituted
allylstannanes, see: Weigand, S.; Bru¨ckner, R. Chem. Eur.
J. 1996, 2, 1077.
,
mg, 3.11 mmol), and 4 A MS (1.5 g) in dry toluene (15
mL) and dry pivalonitrile (1.5 mL) was added
Zr(OtBu)4 (5.6 mL, 3.11 mmol). The reaction mixture
was stirred for 30–60 min at rt. At −50 to −78°C
allyltributyltin (14.4 mL, 46.7 mmol) and octanal (4.9
mL, 31.1 mmol) were added. After 2 h at −20°C,
saturated NaHCO3 solution (20 mL) was added and the
reaction mixture was stirred for an additional 30 min.
An Et2O/water partition was conducted;23 the organic
phase was washed with brine, dried over Na2SO4 and
concentrated in vacuo to afford the crude homoallyl
alcohol. This was purified by silica gel chromatography
(hexanes:EtOAc:CH2Cl2, 20:1:2 to 10:1:2) to afford
(R)-1-heptybut-3-en-1-ol (4.65 g, 27.4 mmol, 88%), [h]D
+6.9° (c 1.0, CHCl3 at 27°C).
Representative procedure for the synthesis of (R)-1-
phenyl-5-hexen-3-ol (entry 4 in Table 2) via the tandem
asymmetric allylation–Oppenauer oxidation. To
a
stirred mixture of (S)-BINOL (100 mg, 0.35 mmol),
,
and 4 A MS (200 mg) in dry toluene (1.8 mL) and dry
pivalonitrile (0.18 mL) was added Zr(OtBu)4 (0.84 mL,
0.46 mmol). The reaction mixture was stirred for 30–60
min at rt. At −50 to −78°C allyltributyltin (1.19 mL,
3.84 mmol) and hydrocinnamaldehyde (0.46 mL, 3.5
10. Applications of the BINOL–Zr complexes in catalytic
asymmetric reactions, see: (a) Bedeschi, P.; Casolari, S.;
Costa, A. L.; Tagliavini, E.; Umani-Ronchi, A. Tetra-
hedron Lett. 1995, 36, 7897; (b) Ishitani, H.; Ueno, M.;
Kobayashi, S. J. Am. Chem. Soc. 1997, 119, 7153; (c)
Casolari, S.; Cozzi, P. G.; Orioli, P.; Tagliavini, E.;
Umani-Ronchi, A. Chem. Commun. 1997, 2123; (d)
Kobayashi, S.; Ishitani, H.; Ueno, M. J. Am. Chem. Soc.
1998, 120, 431; (e) Ishitani, H.; Komiyama, S.;
t
mmol) were added. After 3 h at −20°C, dry BuOMe (3
mL) was added and the reaction mixture was stirred at
0°C for 24 h. The crude mixture was purified by silica
gel chromatography (hexanes:EtOAc:CH2Cl2, 20:1:2 to
10:1:2) to afford (R)-1-phenyl-5-hexen-3-ol (308 mg,
1.75 mmol, 50%).