3
5. I. Onyido, A. R. Norris and E. Buncel, Chem. Rev. 2004, 104,
5911-5930.
6. S. Khatua and M. Schmittel, Org. Lett. 2013, 15, 4422-4425.
7. C. Chen, R. Wang, L. Guo, N. Fu, H. Dong and Y. Yuan, Org.
Lett. 2011, 13, 1162-1165.
8. M. Alfonso, A. Tárraga and P. Molina, Org. Lett. 2011, 13, 6432-
6435.
9. X. Guo, X. Qian and L. Jia, J. Am. Chem. Soc. 2004, 126, 2272-
2273.
10. Y. Chen, W. Zhang, Y. Cai, R. T. K. Kwok, Y. Hu, J. W. Y. Lam,
X. Gu, Z. He, Z. Zhao, X. Zheng, B. Chen, C. Gui and B. Z. Tang,
Chem. Sci. 2017, 8, 2047-2055.
11. J. Tao, X. C. Wang, X. Q. Chen, T. C. Li, Q. P. Diao, H. F. Yu
and T. Wang, Dyes. Pigm. 2017, 137, 601-607.
12. H. Zheng, Z. H. Qian, L. Xu, F. F. Yuan, L. D. Lan and J. G. Xu,
Org. Lett. 2006, 8, 859-861.
Figure 5. Bright-field and fluorescence images of MCF-7 cells with L1: (a-c)
bright-field and fluorescence images of the cells only incubated with L1 (5
µM) for 30 min: (a) fluorescence image from the red channel (540-640 nm);
(b) bright-field image; (c) overlay of (a) and (b); (d-f) bright-field and
fluorescence images of the cells incubated with L1 (5 µM) for 30 min, and
then addition of Hg2+ (50 µM) for another 30 min: (d) fluorescence image
from the red channel (540-640 nm); (e) bright-field image; (f) overlay of (d )
and (e). Scale bar: 20 µm.
13. R. X. Zhang, P. F. Li, W. J. Zhang, N. Li and N. Zhao, J. Mater.
Chem. C. 2016, 4, 10479-10485.
14. Q. Wang, Y. Xu, Y. Hou, Y. Wang, M. Yan, X. Zhang and H.
Wang, RSC Adv. 2016, 6, 114685-114689.
15. X. Wang, Z. Gao, J. Zhu, Z. Gao and F. Wang, Polym. Chem.
2016, 7, 5217-5220.
16. S. Wagner, K. Brödner, B. A. Coombs and U. H. F. Bunz, Eur. J.
Org. Chem. 2012, 2012, 2237-2242.
17. S. B. Kim and D. G. Cho, Eur. J. Org. Chem. 2012, 2012, 2495-
2498.
To investigate the reaction mechanism of L1 with Hg2+, a
mass spectrometry of L1 and Hg2+ was then analyzed. As shown
in Figure 4, with Hg2+(1 mM) introduced to the probe L1 solution,
a peak appeared at m/z 820.2480, which was assigned to
existence of the single-charged complex [L1 + Hg2+ + Cl-]+. This
result indicated that the coordination mode between L1 and Hg2+
was 1:1, which was in consistence with the Job’s plot (Figure S6).
The binding constant between L1 and mercury ions we
determined was 1.39 ( 0.03) × 106 M-1, inferred from the Hg2+
titration curve (Figure S7).
18. W. Lin, X. Cao, Y. Ding, L. Yuan and L. Long, Chem. Commun.
2010, 46, 3529-3531.
19. W. Lin, X. Cao, Y. Ding, L. Yuan and Q. Yu, Org. Biomol. Chem.
2010, 8, 3618-3620.
20. J. H. Huang, Y. F. Xu and X. H. Qian, J. Org. Chem. 2009, 74(5),
2167-2170.
21. C. Arivazhagan, R. Borthakur and S. Ghosh, Organometallics
2015, 34(7), 1147-1155.
22. Y. Chen, Z. H. Sun, B. E. Song and Y. Liu, Org. Biomol. Chem.
2011, 9, 5530-5534.
23. Z. Q. Guo, W. H. Zhu, M. M. Zhu, X. M. Wu and H. Tian, Chem.
Eur. J. 2010, 16, 14424-14432.
24. F. Song, S. Watanabe, P. E. Floreancig and K. Koide, J. Am.
Chem. Soc. 2008, 130, 16460-16461.
Encouraged by the above-mentioned promising results, we
have further studied the bioimaging applications of L1 in living
cells. As can be seen from Figure 5a, MCF-7 cells incubated with
only the probe were non-fluorescent. On the other hand, cells
preliminarily incubated with L1 and then incubated with Hg2+
displayed strong fluorescence (Figure 5d). These results indicated
that L1 was permeable to the cell membrane and was capable of
Hg2+ fluorescence imaging in living cells.
25. A. S. Rao, D. Kim, T. Wang, K. H. Kim, S. Hwang and K. H.
Ahn, Org. Lett. 2012, 14, 2598-2601.
26. B. Liu and H. Tian, Chem. Commun. 2005, 3156-3158.
27. I. J. Chang, K. S. Hwang and S. K. Chang, Dyes. Pigm. 2017, 137,
69-74.
28. Z. Q. Hu, C. S. Lin, X. M. Wang, L. Ding, C. L. Cui, S. F. Liu and
H. Y. Lu, Chem. Commun. 2010, 46, 3765-3767.
29. M. Suresh, S. Mishra, S. K. Mishra, E. Suresh, A. K. Mandal, A.
Shrivastav and A. Das, Org. Lett. 2009, 11, 2740-2743.
30. S. Y. Moon, N. R. Cha, Y. H. Kim and S. K. Chang, J. Org.
Chem. 2004, 69, 181-183.
In summary, a novel fluorescent probe (L1) based on indole
and Rhodamine fluorophore has been discovered for the highly
selective and sensitive detection to Hg2+ species. The detection
limit of this new probe is as low as 5.0 × 10-8 M. Besides, the
probe L1 can display a good linear response toward Hg2+ in two
dynamic ranges of 2-15 µM and 15-200 µM in aqueous media,
which is useful for quantitatively detecting Hg2+ in low and high
concentrations. Moreover, as can be seen from cell imaging tests,
the probe L1 can image Hg2+ species in living cells.
31. B. X. Shen and Y. Qian, J. Mater. Chem. B. 2016, 4, 7549-7559.
32. H. C. Hung, C. W. Cheng, Y. Y. Wang, Y. J. Chen, W. S. Chung,
Eur. J. Org. Chem. 2009, 2009, 6360-6366.
33. M. Tian and H. Ihmels, Eur. J. Org. Chem. 2011, 2011, 4145-
4153.
34. H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke and Y. Urano,
Chem. Rev. 2010, 110, 2620-2640.
35. X. Chen, T. Pradhan, F. Wang, J. S. Kim and J. Yoon, Chem. Rev.
2012, 112, 1910-1956.
36. X. Li, X. Gao, W. Shi and H. Ma, Chem. Rev. 2014, 114, 590-659.
37. C. Kar, M. D. Adhikari, A. Ramesh and G. Das, Iorg. Chem.
2013, 52, 743-752.
Acknowledgments
38. B. Dong, K. Zheng, Y. Tang and W. Lin, J. Mater. Chem. B.
2016, 4, 1263-1269.
We thank the financial support from the National Natural Science
Foundation of China (51578224) and the Natural Science
Foundation of Hunan Province (2015JJ4018).
References and notes
1. E. M. Nolan and S. J. Lippard, Chem. Rev. 2008, 108, 3443-3480.
2. H. Chen, W. Lin and L. Yuan, Org. Biomol. Chem. 2013, 11,
1938-1941.
3. J. Yan, L. Fan, J. Qin, C. Li and Z. Yang, Tetrahedron Lett. 2016,
57, 2910-2914.
4. X. Xue, H. Fang, H. Chen, C. Zhang, C. Zhu, Y. Bai, W. He and
Z. Guo, Dyes Pigm. 2016, 130, 116-121.