August 2011
temperature of HfSiO
formed on cooling and would not be responsible for the decrease
Oxidation Resistance of Hafnium Diboride Ceramics with SiC, WB, or WC
2607
2
7
16
E. Opila, S. Levine, and J. Lorincz, ‘‘Oxidation of ZrB - and HfB
2
2
-Based
4
4
is 17261C so that the HfSiO is likely
Ultra-High Temperature Ceramics,’’ J. Mater. Sci., 39 [19] 5969–77 (2004).
S. C. Zhang, G. E. Hilmas, and W. G. Fahrenholtz, ‘‘Improved Oxidation
17
in oxygen penetration at 20001C.
Resistance of Zirconium Diboride by Tungsten Carbide Additives,’’ J. Am. Ceram.
Soc., 11 [91] 3530–5 (2008).
The combined effect of the more viscous outer layer and
denser inner layer promote oxidation resistance and provide for
an overall thinner scale at exposure temperatures of 20001C in
HSWC and HSWB.
18
F. Peng and R. F. Speyer, ‘‘Oxidation Resistance of Fully Dense ZrB
with SiC, TaB and TaSi Additives,’’ J. Am. Ceram. Soc., 91 [5] 1489–94
2008).
2
2
2
(
19
I. G. Talmy, J. A. Zaykoski, and M. Opeka, ‘‘High-Temperature Chemistry
and Oxidation of ZrB Ceramics Containing SiC, Si , Ta Si , and TaSi ,’’
J. Am. Ceram. Soc., 91 [7] 2250–7 (2008).
2
N
3 4
5
3
2
20
M. Gasch, ‘‘Physical Characterization and Arcjet Oxidation of Hafnium-
Based Ultra High Temperature Ceramics Fabricated by Hot Pressing and Field
V. Conclusion
Dense HfB –SiC samples were prepared with additives of WC
2
Assisted Sintering,’’ J. Eur. Ceram. Soc., 30 [11] 2337–44 (2010).
S. C. Zhang, W. G. Fahrenholtz, and G. E. Hilmas, ‘‘Oxidation of ZrB
21
2
and
and WB. Both the WC and WB additives promoted sintering
while reducing the grain size of HfB . Solid solutions of W–Hf–
B and W–Hf–C were formed in both samples. The WC- and
ZrB -SiC Ceramics with Tungsten Additions,’’ ECS Trans., 16 [44] 137–45 (2009).
2
22
2
L. L. Y. Chang, M. G. Scroger, and B. Phillips, ‘‘Condensed Phase Relations
in the Systems ZrO –WO –WO and HfO –WO –WO ,’’ J. Am. Ceram. Soc., 50
2
2
3
2
2
3
WB-containing HfB
2
–SiC samples oxidized to 16001 and
–SiC sample.
[4] 211–5 (1967).
23
J. Tiley, K. Shiveley II, G. B. Viswanathanb, C. A. Crouse, and A. Shiveley,
‘Novel Automatic Electrochemical–Mechanical Polishing (ECMP) of Metals for
Scanning Electron Microscopy,’’ Micron, 41 [6] 615–21 (2010).
18001C exhibited similar oxide scales as the HfB
2
‘
However, the samples with WC and WB showed a 30% reduc-
tion in scale thickness when the samples were oxidized at 20001C
due to a more viscous phase separated glass found in the out-
ermost regions of the scale and a denser inner HfO2 that
restricted oxygen penetration to the sample.
24
A. L. Chamberlain, W. G. Fahrenholtz, and G. E. Hilmas, ‘‘High Strength
Zirconium Diboride-Based Ceramics,’’ J. Am. Ceram. Soc., 87 [6] 1170–72 (2004).
A. Rundqvist and S. Harsta, ‘‘The Crystal Chemistry of Kappa-Phases,’’
25
J. Solid State Chem., 70, 210–8 (1987).
V. I. Kuz’ma, B. I. Lakh, D. A. Stadnyk, and Y. B. Kovalyk, ‘‘Systems Ha-
26
fnium–Tungsten–Boron, Hafnium–Rhenium–Boron, and Niobium–Rhenium–
Boron,’’ Powd. Metall. Metal. Ceram., 9 [12] 1003–6 (1971).
27
Acknowledgment
D. Shin, R. Arroyave, and Z.-K. Liu, ‘‘Thermodynamic Modeling of the Hf–
Si–O System,’’ CALPHAD, 30, 375–86 (2006).
S. V. Ushakov, A. Navrotsky, Y. Yang, S. Stemmer, K. Kukli, M. Ritali,
28
The authors would like to thank Pavel Mogilevsky for his help in preparing the
TEM-FIB sample and useful discussions regarding TEM-EDS.
M. A. Leskel, P. Fejes, A. Demkov, C. Wang, B.-Y. Nguyen, D. Triyoso, and
P. Tobin, ‘‘Crystallization in Hafnia- and Zirconia-Based Systems,’’ Phys. Status
Solidi B, 241 [10] 2268–78 (2004).
29
W.-M. Guo, J. Vleugels, G.-J. Zhang, P. L. Wang, and O. Van der Biest,
‘Effects of Re (Re5 La, Nd, Y, Yb) Addition in Hot-Pressed ZrB –SiC
Ceramics,’’ J. Eur. Ceram. Soc., 29, 3063–8 (2009).
References
‘
O
2 3
2
1
R. L. Cloughtery, R. L. Pober, and L. Kaufman, ‘‘Thermogravimetric Study
in the Temperature Range of 800–15001C,’’ Trans. Met.
30
of the Oxidation of ZrB
Soc., 242, 1077–82 (1968).
2
T. S. R. Ch. Murthy, C. Subramanian, S. Kumar, R. K. Fotedar, and A. K.
Suri, ‘‘Investigation on the Synthesis of HfB2 and Development of a New Com-
2
J. R. Fenter, ‘‘Refractory Diborides as Engineering Materials,’’ SAMPE
Quarterly, 2, 1–15 (1971).
J. W. Hinze, H. C. Tripp, and W. C. Graham, ‘‘High-Temperature Oxidation
posite with TiSi ,’’ Int. J. Refr. Met. Hard Mater., 28, 201–10 (2010).
2
31
A. E. McHale, Phase Diagrams for Ceramists. Diagram 8843, Vol. X. The
American Ceramic Society, Westerville, OH, 1994.
S. S. Ordan’yan, N. V. Kosterova, and N. M. Maksimova, ‘‘Interaction in the
3
32
Behavior of a HfB
249–54 (1971).
2
Plus 20 v/o SiC Composite,’’ J. Electrochem. Soc., 122 [9]
1
HfB –W System,’’ Inorg. Mater., 16 [5] 581–3 (1980).
2
4
33
W. C. Tripp, H. H. Davis, and H. C. Graham, ‘‘Effect of an SiC Addition on
the Oxidation of ZrB ,’’ Ceram. Bull., 52 [8] 612–6 (1973).
V. G. Denbnovetskaya and E. N. Grebenkina, ‘‘Temperature Coefficient of
Electrical Resistivity of Some Complex Carbides,’’ Powder Met. Met. Ceram., 7 [3]
187–8 (1968).
2
5
J. B. Berkowitz-Mattuck, ‘‘High Temperature Oxidation,’’ J. Electrochem.
Soc., 13 [9] 908–14 (1966).
E. Wuchina, M. Opeka, S. Causey, K. Buesking, J. Spain, A. Cull, J. Routbout,
34
H. Zhang, Y. Yan, Z. Huang, X. Liu, and D. Jiang, ‘‘Pressureless Sintering of
ZrB –SiC Ceramics: The Effect of B C Content,’’ Scr. Mater., 60 [7] 559–62 (2009).
D. Chen, M. E. Sixta, X. F. Zhang, L. C. De Jonghe, and R. O. Ritchie, ‘‘Role
6
2
5
4
3
and F. Guitierrez-Mora, ‘‘Designing for Ultrahigh-Temperature Applications:
and aHf,’’ J. Mater.
The Mechanical and Thermal Properties of HfB ,HfC
2
x
, HfN
x
of the grain-boundary phase on the elevated-temperature strength, toughness,
fatigue and creep resistance of silicon carbide sintered with Al, B and C,’’ Acta
Mater., 48, 4599–608 (2000).
Sci., 39 [19] 395939–49 (2004).
M. M. Opeka, I. G. Talmy, and J. A. Zaykoski, ‘‘Oxidation-Based Materials
7
36
Selection for 20001C1Hypersonic Aerosurfaces: Theoretical Considerations and
Historical Experience,’’ J. Mater. Sci., 39 [19] 5887–904 (2004).
S.S Hwang, A. L. Vailiev, and N. P. Padture, ‘‘Improved Processing and
Oxidation-Resistance of ZrB2 Ultra-High-Temperature Ceramics Containing SiC
8
X. Zhang, P. Hu, J. Ham, and S. Meng, ‘‘Ablation Behavior of ZrB –SiC Ultra
2
Nanodispersoids,’’ Mater. Sci. Eng. A, 464, 216–24 (2007).
J.-P. Maria, D. Wickaksana, J. Parrette, and A. I. Kingon, ‘‘Crystallization in
37
High Temperature Ceramics Under Simulated Atmospheric Re-Entry Condition,’’
Comp. Sci. Technol., 68, 1718–26 (2008).
SiO -Metal Alloys,’’ J. Mater. Res., 17 [7] 1571–9 (2002).
2
W. Vogel, Glass Chemistry, 2nd edition, Springer-Verlag, New York, NY,
1994.
9
38
L. Scatteia, D. Alfano, S. Cantoni, F. Monteverde, M. De Stefano Fumo, and
A. Di Maso, ‘‘Plasma Torch Test of an Ultra-High Temperature Ceramics Nose
Cone Demonstrator,’’ J. Spacecraft Rockets, 47 [2] 271–9 (2010).
39
3 2 3
E. M. Levin, ‘‘The System W0 –B O ,’’ J. Am. Ceram. Soc., 48 [9] 491–2
10
T. A. Parthasarathy, R. A. Rapp, M. Opeka, and R. J. Kerans, ‘‘A Model
for the Oxidation of ZrB , HfB , and TiB ,’’ Acta Mater., 55, 5999–6010 (2007).
J. Marschall and Y.-K. Chen, ‘‘Modeling Surface Oxidation in Transient
(1965).
40
2
2
2
L. L. Davis, J. G. Darab, M. Qian, D. Zhao, C. S. Palenik, H. Li, D. M.
11
Strachan, and L. Li, ‘‘Hafnium in Peralkaline and Peraluminous Boro-Alumino-
silicate Glass and Glass Sub-Components: A Solubility Study,’’ J. Non-Cryst. Sol-
ids, 328, 102–22 (2003).
Aerothermal Heating Environments’’; pp. 1124–37 in Proceedings of 42nd AIAA
Aerospace Sciences Meeting and Exhibit, AIAA, Reno, NV, 2004.
12
41
C. M. Carney, ‘‘Oxidation Resistance of Hafnium Diboride–Silicon Carbide
from 1400 to 2000 C,’’ J. Mater. Sci., 44, 5673–81 (2009).
E. M. Levin and C. R. Robbins, Phase Diagrams for Ceramists. Diagram 332,
Vol. I. The American Ceramic Society, Columbus, OH, 1964.
13
42
P. Hu, X.-H. Zhang, J.-C. Han, X.-G. Luo, and S.-Y. Du, ‘‘Effect of Various
Additives on the Oxidation Behavior of ZrB -Based Ultra-High Temperature Ce-
ramics,’’ J. Am. Ceram. Soc., 93 [2] 345–9 (2010).
M. Ibrahim and N. F. H Bright, ‘‘The Binary System Nb O –SiO ,’’ J. Am.
2
5
2
2
Ceram. Soc., 45 [5] 221–2 (1962).
43
J. Booth, T. Ekstrom, E. Iguchi, and R. J. D. Tilley, ‘‘Notes on Phases Oc-
14
S. Johnson and M. Gash, ‘‘Physical Characterization and Arcjet Oxidation of
Hafnium-Based Ultra High Temperature Ceramics Fabricated by Hot Pressing
and Field-Assisted Sintering,’’ J. Eur. Cer. Soc., 30, 2337–44 (2010).
curing in the Binary Tungsten-Oxygen System,’’ J. Solid State Chem., 41, 293–307
(1982).
44
V. B. Voitovich, V. V. Sverdel, R. F. Voitovich, and E. I. Golovko, ‘‘Oxida-
tion of WC–Co, WC–Ni and WC–Co–Ni Hard Metals in the Temperature Range
500–8001C,’’ Int. J. Refr. Met. Hard Mater., 14 [4] 289–95 (1996).
15
I. G. Talmy, J. A. Zaykoski, M. M. Opeka, and S. Dallek, ‘‘Oxidation of
Ceramics Modified with SiC and Group IV-VI Transition Metal Diborides,’’
Electrochem. Soc. Proc., 12, 144–57 (2001).
ZrB
2
&