Angewandte
Chemie
Porter, J. P. Zimmer, M. G. Bawendi, J. Am. Chem. Soc. 2006,
128, 12590 – 12591.
content 10%), we checked that the growth of Au particles is
almost completely suppressed. For intermediate situations
but at high ligand concentration, we only observe the growth
of gold on the cobalt tips, in agreement with the hypothesis
that the stabilizing ligands are coordinated preferentially on
the sides of the nanorods. The temperature effects observed at
low ligand concentration (Figure 2) are, however, more
difficult to understand, since by increasing the temperature
the tip position (constrained growth) is favored. At low
temperature, the results can be explained if we consider that
the attack of [AuClPPh3] happens on ligand deficient sites on
the nanorods surface. In such samples, ligand-depleted sites
are found both on tips and on the lateral sides. At higher
temperature and for the lateral sides of the nanorods, fast
exchange of ligands[11] would not permit enough resting time
for the nucleation of Au to take place. This fast exchange of
the ligands on the nanorods sides has no influence on the
nucleation of Au on the tips since these areas are expected to
accommodate a lower concentration of ligands. Another
indication of the importance of the timescale for the
formation of the primary nuclei is that practically no growth
of Au takes place if the reaction mixture is stirred. In an
analogous way to crystal formation, stirring suppresses the
formation of the primary nuclei for further crystal growth.
In conclusion, we report the synthesis of hybrid gold–
cobalt nanorods. The present results support the hypothesis
that the stabilizing ligands are coordinated preferentially on
the sides of the nanorods and that a fast exchange occurs on
the surface of the rods which involves the stabilizing ligands
and also probably PPh3. Moreover, we show that chemical
control of both the gold precursors and the ligands allow
1) control of the gold growth process (heterogeneous nucle-
ation versus galvanic displacement) and 2) control of the
location of the gold nanoparticle growth (tip or whole body)
through kinetic control of the reaction. This result makes
possible the selective production of gold-tipped ferromag-
netic cobalt nanorods. We are currently studying the physical
properties of these new nanoobjects: preliminary optical
measurements show in both cases (gold nanoparticles random
or gold nanoparticles on the tips) the presence of absorptions
near 550 nm attributed to a plasmon absorption as well as a
very weak one near 720 nm,[20] whereas magnetic properties
of the new Au–Co nanorods are currently under examination
to investigate the effect of Au presence and location on the
magnetic anisotropy of these objects.
[2] a) C. Pacholski, A. Kornowski, H. Weller, Angew. Chem. 2004,
116, 4878 – 4881; Angew. Chem. Int. Ed. 2004, 43, 4774 – 4777;
b) T. Mokari, E. Rothenberg, I. Popov, R. Costi, U. Banin,
Science 2004, 304, 1787 – 1790; c) T. Mokari, C. G. Sztrum, A.
Salant, E. Rabani, U. Banin, Nat. Mater. 2005, 4, 855 – 863;
d) A. E. Saunders, I. Popov, U. Banin, J. Phys. Chem. B 2006,
110, 25421– 25429; e) J. Yang, H. I. Elim, Q. Zhang, J. Y. Lee, W.
Ji, J. Am. Chem. Soc. 2006, 128, 11921 – 11926; f) S.-H. Choi, E.-
G. Kim, T. Hyeon, J. Am. Chem. Soc. 2006, 128, 2520 – 2521.
[3] a) H. Gu, R. Zheng, X. Zhang, B. Xu, J. Am. Chem. Soc. 2004,
126, 5664 – 5665; b) H. Yu, M. Chen, P. M. Rice, S. X. Wang,
R. L. White, S. Sun, Nano Lett. 2005, 5, 379 – 382; c) H. Gu, Z.
Yang, J. Gao, C. K. Chang, B. Xu, J. Am. Chem. Soc. 2005, 127,
34 – 35; d) R. Buonsanti et al., J. Am. Chem. Soc. 2006, 128,
16953 – 16970; see the Supporting Information.
[4] K.-W. Kwon, M. Shim, J. Am. Chem. Soc. 2005, 127, 10268 –
10275.
[5] a) T. Pellegrino, A. Fiore, E. Carlino, C. Giannini, P. D. Cozzoli,
G. Ciccarella, M. Respaud, L. Palmirotta, R. Cingolani, L.
Manna, J. Am. Chem. Soc. 2006, 128, 6690 – 6698; b) J. Choi, Y.
Jun, S. Yeon, H. C. Kim, J. S. Shin, J. Cheon, J. Am. Chem. Soc.
2006, 128, 15982 – 15983.
[6] a) T. Teranishi, Y. Inoue, M. Nakaya, Y. Oumi, T. Sano, J. Am.
Chem. Soc. 2004, 126, 9914 – 9915; b) T. Teranishi, M. Saruyama,
M. Nakaya, M. Kanehara, Angew. Chem. 2007, 119, 1743 – 1745;
Angew. Chem. Int. Ed. 2007, 46, 1713 – 1715; c) W. Shi, Y. Sahoo,
H. Zeng, Y. Ding, M. T. Swihart, P. N. Prasad, Adv. Mater. 2006,
18, 1889 – 1894; d) W. Shi, H. Zeng, Y. Sahoo, T. Y. Ohulchan-
skyy, Y. Ding, Z. L. Wang, M. Swihart, P. N. Prasad, Nano Lett.
2006, 6, 875 – 881.
[7] P. D. Cozzoli, T. Pellegrino, L. Manna, Chem. Soc. Rev. 2006, 35,
1195 – 1208.
[8] A. M. Schwarztberg, T. Y. Olson, C. E. Talley, J. Z. Zhang, J.
Phys. Chem. B 2006, 110, 19935 – 19944.
[9] D. V. Goia, E. Matijevic, New J. Chem. 1998, 22, 1203 – 1215.
[10] X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A.
Kadanavich, A. P. Alivisatos, Nature 2000, 404, 59 – 61.
[11] C. Pan, K. Pelzer, K. Philippot, B. Chaudret, F. Dassenoy, P.
Lecante, M.-J. Casanove, J. Am. Chem. Soc. 2001, 123, 7584 –
7593.
[12] A. Salant, E. Amitay-Sadovsky, U. Banin, J. Am. Chem. Soc.
2006, 128, 10006 – 10007.
[13] B. Chaudret, C. R. Phys. 2005, 6, 117.
[14] a) F. Dumestre, B. Chaudret, C. Amiens, M.-C. Fromen, M.-J.
Casanove, P. Renaud, P. Zurcher, Angew. Chem. 2002, 114,
4462 – 4465; Angew. Chem. Int. Ed. 2002, 41, 4286 – 4289; b) F.
Dumestre, B. Chaudret, C. Amiens, M. Respaud, P. Fejes, P.
Renaud, P. Zurcher, Angew. Chem. 2003, 115, 5371– 5374;
Angew. Chem. Int. Ed. 2003, 42, 5213 – 5216.
[15] a) R. A. Andersen, K. Faegri, J. C. Green, A. Haaland, M. F.
Lappert, W. P. Leung, K. Rypdal, Inorg. Chem. 1988, 27, 1782 –
1786; b) M. I. Bruce, B. K. Nicholson, O. B. Shawkataly, Inorg.
Synth. 1989, 26, 324 – 328; c) R. Uson, A. Laguna, M. Laguna,
Inorg. Synth. 1989, 26, 85 – 91.
Received: May 7, 2007
Published online: August 8, 2007
[16] F. Wetz, K. Soulantica, M. Respaud, A. Falqui, B. Chaudret,
Mater. Sci. Eng. C DOI:10.1016/j.msec,2006.09.010.
[17] S. Gomez, K. Philippot, V. Colliꢀre, B. Chaudret, F. Senocq, P.
Lecante, Chem. Commun. 2000, 1945 – 1946.
[18] M. J. Richardson, J. H. Johnston, T. Borrmann, Cent. Eur. J.
Chem. 2006, 26, 2618 – 2623.
[19] B. Mutaftschiev, The Atomistic Nature of Crystal Growth,
Springer, Heidelberg, 2001, pp. 223 – 248.
[20] J. Pꢁrez-Juste, B. Rodriguez-Gonzalez, P. Mulvaney, L. Liz-
Marzan, Adv. Funct. Mater. 2005, 15, 1065 – 1071.
Keywords: cobalt · gold · heterostructures · magnetic properties ·
nanorods
.
[1] a) D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L.-W.
Wang, A. P. Alivisatos, Nature 2004, 430, 190 – 195; b) H. Liu,
Nano Lett. 2004, 4, 2379 – 2401; c) S. Kudera, L. Carbone, M. F.
Casula, R. Cingolani, A. Falqui, E. Snoeck, W. J. Parak, L.
Manna, Nano Lett. 2005, 5, 445 – 449; d) J. E. Halpert, V. J.
Angew. Chem. Int. Ed. 2007, 46, 7079 –7081
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
7081