R.-H. Wang et al. / Materials Research Bulletin 44 (2009) 1468–1473
1473
[8] Azarian, A.I. Zad, A. Dolati, Opt. Commun. 274 (2007) 471–476.
[9] J. Li, J. Huang, Y. Qin, F. Ma, Mater. Sci. Eng. B 138 (2007) 199–204.
[10] L.L. Welbes, R.C. Scarrow, A.S. Borovik, Chem. Commun. 22 (2004) 2544–2545.
[11] M. Aslam, R. Bhobe, N. Alem, S. Donthu, V.P. Dravid, J. Appl. Phys. 98 (2005)
074311.
the above discussion, the high coercivity of the synthesized
flowerlike Co microcrystals should be attributed to the anisotropic
shape and the hcp crystal structure.
[12] P.K. Tyagi, A. Misra, M.K. Singh, D.S. Misra, J. Ghatak, P.V. Satyam, F. Le Normand,
Appl. Phys. Lett. 86 (2005) 253110.
4. Conclusions
[13] Y.J. Zhang, S. Ma, D. Li, Z.H. Wang, Z.D. Zhang, Mater. Res. Bull. 43 (2008) 1957–
1965.
[14] L. Guo, F. Liang, X. Wen, S. Yang, L. He, W. Zheng, C. Chen, Q. Zhong, Adv. Funct.
Mater. 17 (2007) 425–430.
[15] B.Q. Xie, Y. Qian, S. Zhang, S. Fu, W. Yu, Eur. J. Inorg. Chem. 2006 (2006) 2454–
2459.
[16] H. Cao, Z. Xu, H. Sang, D. Sheng, C. Tie, Adv. Mater. 13 (2001) 121–123.
[17] Q. Xie, Z. Dai, W.W. Huang, J.B. Liang, C.L. Jiang, Y.T. Qian, Nanotechnology 16
(2005) 2958–2962.
[18] F.T. Huanga, R.S. Liua, S.F. Hu, J. Magn. Magn. Mater. 304 (2006) e19–e21.
[19] M.H. Pan, H. Liu, J.Z. Wang, J.F. Jia, X.Q.K. Xue, J.L. Li, S. Qin, U.M. Mirsaidov, X.R.
Wang, J.T. Markert, Z. Zhang, C.K. Shih, Nano Lett. 5 (2005) 87–90.
[20] K. Nielsch, F.J. Castan˜o, C.A. Ross, R. Krishnan, J. Appl. Phys. 98 (2005) 034318.
[21] L.P. Zhu, H.M. Xiao, W.D. Zhang, Y. Yang, S.Y. Fu, Cryst. Growth Des. 8 (2008)
1113–1118.
[22] R. Xu, T. Xie, Y. Zhao, Y. Li, Cryst. Growth Des. 7 (2007) 1904–1911.
[23] W. He, P. Gao, L. Chu, L. Yin, Z. Li, Y. Xie, Nanotechnology 17 (2006) 3512–3517.
[24] V.F. Puntes, K.M. Krishnan, A.P. Alivisatos, Science 291 (2001) 2115–2117.
[25] Y. Zhu, H. Zheng, Q. Yang, A. Pan, Z. Yang, Y. Qian, J. Cryst. Growth 260 (2004) 427–
434.
In summary, well-defined, 3D flowerlike metallic Co micro-
crystals have been successfully synthesized via a facile hydro-
thermal reduction route. The unique flowery structures composed
by hexagonal-tapered petals are reported for the first time. The
morphology of the Co microcrystals can be controlled from
flowerlike Co to spherical Co by changing the concentration of
NaOH. A possible formation mechanism of the crystal was
proposed on the basis of the experimental results. The synthesized
flowerlike products exhibited a ferromagnetic nature with a
significant enhanced magnetic coercivity due to the anisotropic
shape and the hcp crystal structure. These special microcrystals
may process promising application in microdevices. What is more,
we believe that this method may provide a facile strategy to
fabricate complex hierarchical structures.
[26] Y.L. Hou, H. Kondoh, T. Ohta, Chem. Mater. 17 (2005) 3994–3996.
[27] C. Petit, A. Taleb, M.P. Pileni, Adv. Mater. 10 (2006) 259–261.
[28] X. Liu, R. Yi, Y. Wang, G. Qiu, N. Zhang, X. Li, J. Phys. Chem. C 111 (2007) 163–167.
[29] H. Li, S. Liao, J. Phys. D: Appl. Phys. 41 (2008) 1–7.
Acknowledgments
This work was supported by Shanghai Nanotechnology
Promotion Center (0852nm03200), the PhD Program Scholarship
Fund of ECNU 2008 (Grant 20080045) and Equipment Sharing
Platform of ECNU.
[30] H.T. Yang, Y.K. Su, C.M. Shen, T.Z. Yang, H.J. Gao, Surf. Interf. Anal. 36 (2004) 155–
160.
[31] V. Fleury, Nature 390 (1997) 145–148.
[32] D. Wang, C.M. Lieber, Nat. Mater. 2 (2003) 355–356.
[33] L. Manna, D.J. Milliron, A. Meisel, E.C. Scher, A.P. Alivisatos, Nat. Mater. 2 (2003)
382–385.
[34] Q. Liao, R. Tannenbaum, Z.L. Wang, J. Phys. Chem. B 110 (2005) 14262–14265.
[35] Z. Liu, S. Li, Y. Yang, S. Peng, Z. Hu, Y. Qian, Adv. Mater. 15 (2003) 1946–1948.
[36] Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, M.A. Rodriguez, H. Konishi,
H. Xu, Nat. Mater. 2 (2003) 821–826.
[37] H.Li,L.Chai,X.Wang,X.Wu,G.Xi,Y.Liu,Y.Qian,J.Cryst.Growth7(2007)1918–1922.
[38] P. Chai, X. Liu, Z. Wang, M. Lu, X. Cao, J. Meng, Cryst. Growth Des. 7 (2007) 2568–
2575.
[39] C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105 (2005) 1025–1102.
[40] G. Dumpich, T.P. Krome, B. Hausmanns, J. Magn. Magn. Mater. 248 (2002) 241–247.
[41] B. Hausmanns, T.P. Krome, G. Dumpich, J. Appl. Phys. 93 (2003) 8095–8097.
[42] B.D. Cullity, Introduction to Magnetic Materials, Addison-Wesley Publishing
Company, Reading, MA, 1972, pp. 240–243.
References
[1] G.M. Whitesides, B. Grzybowski, Science 295 (2002) 2418–2421.
[2] Z.L. Wang, Adv. Mater. 10 (1998) 13–30.
[3] P.V. Kamat, J. Phys. Chem. B 106 (2002) 7729–7744.
[4] Z.L. Wang, Z. Dai, S. Sun, Adv. Mater. 12 (2002) 1944–1946.
[5] P. Gambardella, S. Rusponi, M. Veronese, S.S. Dhesi, C. Grazioli, A. Dallmeyer, I.
Cabria, R. Zeller, P.H. Dederichs, K. Kern, C. Carbone, H. Brune, Science 300 (2003)
1130–1133.
[6] C.T. Black, C.B. Murray, R.L. Sandstrom, S. Sun, Science 290 (2000) 1131–1134.
[7] K.T. Nam, D.W. Kim, P.J. Yoo, C.Y. Chiang, N. Meethong, P.T. Hammond, Y. Chiang,
A.M. Belcher, Science 312 (2006) 885–888.
[43] D.L. Leslie-Pelecky, R.D. Rieke, Chem. Mater. 8 (1996) 1770–1783.