SYNTHESIS OF NANOCRYSTALLINE ZrO WITH TAILORED PHASE COMPOSITION
499
2
pores through particle growth and coalescence of crysꢀ
tallites with the formation of monolithic structures.
Phys. Rev. B: Condens. Matter Mater. Phys., 2010, vol. 81,
paper 174 201.
. Toraya, H., Yoshimura, M., and Somiya, S., Calibration
Curve for Quantitative Analysis of the Monoclinic–Tetꢀ
8
Thus, the present results demonstrate that highꢀ
power sonication during hydrous zirconia precipitaꢀ
tion allows one to tune the composition and microꢀ
structure of the resulting material. In particular,
acoustic processing enables the preparation of xeroꢀ
gels containing much less impurities and having a conꢀ
siderably larger specific surface area (especially when
synthesis is conducted at a relatively low solution pH).
ragonal ZrO System by XꢀRay Diffraction, J. Am.
2
Ceram. Soc., 1984, vol. 67, pp. C119–C121.
9
. Ivanov, V.K., Kopitsa, G.P., Baranchikov, A.Ye., et al.,
Mesostructure, Fractal Properties and Thermal Decomꢀ
position of Hydrous Zirconia and Hafnia, Russ. J. Inorg.
Chem., 2009, vol. 54, no. 14, pp. 2091–2106.
1
0. Garvie, R.C., The Occurrence of Metastable Tetragonal
Zirconia As a Crystallite Size Effect, J. Phys. Chem.,
1
965, vol. 69, pp. 1238–1243.
ACKNOWLEDGMENTS
1
1. Djurado, E., Bouvier, P., and Lucazeau, G., Crystallite
Size Effect on the Tetragonal–Monoclinic Transition of
Undoped Nanocrystalline Zirconia Studied by XRD and
Raman Spectrometry, J. Solid State Chem., 2000,
vol. 149, pp. 399–407.
2. Shukla, S. and Seal, S., Thermodynamic Tetragonal
Phase Stability in Sol–Gel Derived Nanodomains of
Pure Zirconia, J. Phys. Chem. B, 2004, vol. 108,
pp. 3395–3399.
3. Gavrilov, V.Yu. and Zenkovets, G.A., Formation of the
Pore Structure of Zirconium Dioxide at the Stage of Gel
Aging, Kinet. Catal., 2000, vol. 41, pp. 561–565.
4. Stenina, I.A., Voropaeva, E.Yu., Veresov, A.G., et al.,
Effect of Precipitation pH and Heat Treatment on the
Properties of Hydrous Zirconium Dioxide, Russ. J.
Inorg. Chem., 2008, vol. 53, p. 350.
5. Stenina, I.A., Voropaeva, E.Yu., Brueva, T.R., et al.,
HeatꢀTreatment Induced Evolution of the Morphology
and Microstructure of Zirconia Prepared from Chloride
Solutions, Russ. J. Inorg. Chem., 2008, vol. 53, pp. 842–
848.
6. Clearfield, A. and Vaughan, P.A., The Crystal Structure
of Zirconyl Chloride Octahydrate and Zirconyl Bromide
Octahydrate, Acta Crystallogr., 1956, vol. 9, pp. 555–558.
This work was supported by the Russian Foundaꢀ
tion for Basic Research (grant no. 09ꢀ03ꢀ01067) and
the RF Ministry of Education and Science (grant
no. 14.740.11.0281).
1
REFERENCES
1
2
3
. Gedanken, A., Using Sonochemistry for the Fabrication
of Nanomaterials, Ultrason. Sonochem, 2004, vol. 11,
pp. 47–55.
1
. Suslick, K.S., Applications of Ultrasound to Materials
Chemistry, Ann. Rev. Mater. Sci., 1999, vol. 29,
pp. 295–326.
1
. Baranchikov, A.Ye., Ivanov, V.K., and Tretyakov, Yu.D.,
Sonochemical Synthesis of Inorganic Materials, Russ.
Chem. Rev., 2007, vol. 76, pp. 133–151.
1
4
5
6
. Neppiras, E.A., Acoustic Cavitation, Phys. Rep., 1980,
vol. 61, pp. 159–251.
. Margulis, M.A., Sonoluminescence, Phys. Usp., 2000,
vol. 43, pp. 259–282.
1
. Donattiv, D.A., Vollet, D.R., Ibañez Ruiz, A., et al.,
Mass Fractal Characteristics of Silica Sonogels As
Determined by SmallꢀAngle XꢀRay Scattering and 17. Muha, G.M. and Vaughan, P.A., Structure of the Comꢀ
Nitrogen Adsorption, Phys. Rev. B: Condens. Matter
Mater. Phys., 2005, vol. 71, pp. 014 203–014 209.
plex Ion in Aqueous Solutions of Zirconyl and Hafnyl
Oxyhalides, J. Chem. Phys., 1960, vol. 33, no. 1,
pp. 194–199.
7
. Ivanov, V.K., Kopitsa, G.P., Sharikov, F.Yu., et al., Ultraꢀ
soundꢀInduced Changes in Mesostructure of Amorꢀ 18. Clearfield, A., Structure Aspects of Zirconium Chemisꢀ
phous Iron(III) Hydroxide Xerogels: A SANS Study, try, Rev. Pure Appl. Chem., 1964, vol. 14, pp. 91–108.
INORGANIC MATERIALS Vol. 48
No. 5 2012