P. Ratnasamy et al. / Journal of Catalysis 221 (2004) 455–465
465
ZrO2 < CuO–CeO2–ZrO2 ꢀ CuO–CeO2. A catalyst of
composition containing 5% CuO exhibited stable activity in
long-term experiments, using as feed the effluent from an
actual steam reformer-cum-water–gas-shift reactor combi-
nation generating hydrogen from commercial liquefied pe-
troleum gas. The adverse influence of H2O was accentuated
in catalysts containing ZrO2. Below 423 K and over CuO–
CeO2 with less than 5 wt% CuO, the presence of H2O in
the feed suppressed CO oxidation. The high dispersion and
facile reducibility of CuO on CeO2 and CeO2–ZrO2 sup-
ports are responsible for their superior activity/selectivity
over CuO–ZrO2 catalysts.
[22] J.B. Wang, W.H. Shih, T.-J. Huang, Appl. Catal. A 203 (2000) 191.
[23] H. Vidal, J. Kašpar, M. Pijolat, G. Colon, S. Bernal, A. Cordón, V.
Perrichon, F. Fally, Appl. Catal. B 27 (2000) 49.
[24] A. Martínez-Arias, M. Fernández-García, J. Soria, J.C. Conesa,
J. Catal. 182 (1999) 367.
[25] A. Martínez-Arias, M. Fernández-García, O. Gálvez, J.M. Coronado,
J.A. Anderson, J.C. Conesa, J. Soria, G. Munuera, J. Catal. 195 (2000)
207.
[26] A. Martínez-Arias, M. Fernández-García, A.B. Hungría, A. Iglesias-
Juez, O. Gálvez, J.A. Anderson, J.C. Conesa, J. Soria, G. Munuera,
J. Catal. 214 (2003) 261.
[27] J. Xiaoyuan, L. Guanglie, Z. Renxian, M. Jianxin, C. Yu, Z. Xiaoming,
Appl. Surf. Sci. 173 (2001) 208.
[28] M.-F. Luo, Y.-J. Zhong, X.-X. Yuan, X.-M. Zheng, Appl. Catal. A 162
(1997) 121.
[29] G. Avgouropoulos, T. Ioannides, Appl. Catal. A 244 (2003) 155.
[30] H. Tanaka, S.-I. Ito, S. Kameoka, K. Tomishige, K. Kunimori, Catal.
Commun. 4 (2003) 1.
References
[31] A. Martínez-Arias, M. Fernández-García, V. Ballesteros, L.N. Sala-
manca, J.C. Conesa, C. Otero, J. Soria, Langmuir 15 (1999) 4796.
[32] W. Liu, M. Flytzani-Stephanopoulos, Chem. Eng. J. 64 (1996) 283.
[33] L. Kundakovic, M. Flytzani-Stephanopoulos, Appl. Catal. A 171
(1998) 13.
[1] D.L. Trimm, Z. Ilsen Önsan, Catal. Rev. Sci. Tech. 43 (2001) 31.
[2] T.V. Choudhary, D.W. Goodman, Catal. Today 77 (2002) 65.
[3] J.R. Rostrup-Nielson, T. Rostrup-Nielson, Cattech 6 (2002) 150.
[4] M.J. Kahlich, H.A. Gasteiger, R.J. Behm, J. Catal. 171 (1997) 93.
[5] H. Igarashi, H. Uchida, M. Suzuki, Y. Sasaki, M. Watanabe, Appl.
Catal. A 159 (1997) 159.
[34] G. Wrobel, C. Lamonier, A. Bennani, A. D’Huysser, A. Aboukais,
J. Chem. Soc., Faraday Trans. 92 (1996) 2001.
[35] A. Bensalem, F. Bozon-Verduraz, M. Delamar, G. Bugli, Appl. Catal.
A 121 (1995) 81.
[6] S.-I. Ito, T. Fujimori, K. Nagashima, K. Yuzaki, K. Kunimori, Catal.
Today 57 (2000) 247.
[36] H. Praliaud, S. Mikhailenko, Z. Chajar, M. Primet, Appl. Catal. B 16
(1998) 359.
[37] S. Velu, K. Suzuki, M. Okazaki, M.P. Kapoor, T. Osaki, F. Ohashi,
J. Catal. 194 (2000) 373.
[38] P.I. Paulose, G. Jose, V. Thomas, G. Jose, N.V. Unnikrishnan, M.K.R.
Warrier, Bull. Mater. Sci. 25 (2002) 69.
[39] J.L.G. Fierro, J. Soria, J. Sanz, J.M. Rojo, J. Solid State Chem. 66
(1987) 154.
[40] M. Che, J.F.J. Kibblewhite, A.J. Tench, M. Dufaux, C. Naccache,
J. Chem. Soc., Faraday Trans. I 69 (1973) 857.
[41] P.G. Harrison, I.K. Ball, W. Azelee, W. Daniell, D. Goldfarb, Chem.
Mater. 12 (2000) 3715.
[42] A. Aboukais, A. Bennani, C.F. Aïssi, G. Wrobel, M. Guelton, J.C.
Vedrine, J. Chem. Soc., Faraday Trans. 88 (1992) 615.
[43] M.M. Gunter, T. Ressler, R.E. Jentoft, B. Bems, J. Catal. 203 (2001)
133.
[7] W.H. Cheng, React. Kinet. Catal. Lett. 58 (1996) 329.
[8] R.M. Torres, A. Sanchez, K. Ueda, K. Tanaka, M. Haruta, J. Catal. 168
(1997) 125.
[9] Y. Teng, H. Sakurai, A. Ueda, T. Kobayashi, Int. J. Hydrogen En-
ergy 24 (1999) 355.
[10] G. Avgouropoulos, T. Ioannides, H.K. Matralis, J. Batista, S. Hocevar,
Catal. Lett. 73 (2001) 33.
[11] W. Liu, M. Flytzani-Stephanopoulos, J. Catal. 153 (1995) 304.
[12] M. Haruta, Cattech 6 (2002) 102.
[13] M.J. Kahlich, H.A. Gasteiger, R.J. Behm, J. Catal. 182 (1999) 430.
[14] G. Avgouropoulos, T. Ioannides, Ch. Papadopoulou, J. Batista, S. Ho-
cevar, H.K. Matralis, Catal. Today 75 (2002) 157.
[15] G.K. Bethke, H.H. Kung, Appl. Catal. A 194–195 (2000) 43.
[16] R.J.H. Grisel, B.E. Nieuwenhuys, J. Catal. 199 (2001) 48.
[17] M.M. Schubert, V. Plzak, J. Garche, R.J. Behm, Catal. Lett. 76 (2001)
143.
[44] P. Ratnasamy, D. Srinivas, H.S. Soni, A.J. Chandwadkar, H.S. Potdar,
C.S. Gopinathand, B.S. Rao, Stud. Surf. Sci. Catal. 135 (2001) 1270.
[45] P. Bera, S. Mitra, S. Sampath, M.S. Hegde, Chem. Commun. (2001)
927.
[18] Y.-F. Han, M.J. Kahlich, M. Kinne, R.J. Behm, Phys. Chem. Chem.
Phys. 4 (2002) 389.
[19] S.-M. Zhang, W.-P. Huang, X.-H. Qiu, B.-Q. Li, X.-C. Zheng, S.-H.
Wu, Catal. Lett. 80 (2002) 41.
[46] R.J. Farrauto, C. Bartholomew, Introduction to Industrial Catalytic
Processes, Chapman & Hall, London, 1997, Chaps. 1, 38, 39.
[20] D.H. Kim, M.S. Lim, Appl. Catal. A 224 (2002) 27.
[21] O. Korotkikh, R. Farrauto, Catal. Today 62 (2000) 249.